Refine Your Search

Topic

Author

Search Results

Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980545
A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Computational Model Describing the Performance of a Ceramic Diesel Particulate Trap in Steady-State Operation and Over a Transient Cycle

1999-03-01
1999-01-0465
A model for calculating the trap pressure drop, various particulate properties, filtration characteristics and trap temperatures was developed during the steady-state and transient cycles using the theory originated by Opris and Johnson, 1998. This model was validated with the data obtained from the steady-state cycles run with an IBIDEN SiC diesel particulate filter. To evaluate the trap experimental filtration efficiency, raw exhaust samples were taken upstream and downstream of the trap. A trap scaling and equivalent comparison model was developed for comparing different traps at the same volume and same filtration area. Using the model, the trap pressure drop data obtained from different traps were compared equivalently at the same trap volume and same filtration area. The pressure drop performance of the IBIDEN SiC trap compared favorably to the previously tested NoTox SiC and the Cordierite traps.
Technical Paper

A Computer Heat Transfer and Hydrocarbon Adsorption Model for Predicting Diesel Particulate Emissions in Dilution Tunnels

1982-02-01
821218
The prediction of particulate concentrations in dlesel exhaust diluted in a dilution tunnel has been achieved using a computer model. The particulate collection filter temperature, soluble organic fraction (SOF) and solids fraction (SOL) of diesel particulate matter were predicted based on exhaust system and dilution tunnel variables that could be measured on a real-time basis. The SOF was assumed to be formed by adsorption of gaseous hydrocarbons onto the solids fraction. The accuracy of the model was determined by comparison to experimentally measured values. The model was able to predict SOF concentrations within 35%, filter temperatures within 3°G, and particulate (SOF + SOL) concentrations within 25% of measured values. A parametric study was conducted using the developed model; and improved test procedures, dilution tunnel dimensions, and federal testing guidelines were suggested.
Technical Paper

A Methodology to Estimate the Mass of Particulate Matter Retained in a Catalyzed Particulate Filter as Applied to Active Regeneration and On-Board Diagnostics to Detect Filter Failures

2008-04-14
2008-01-0764
A methodology to estimate the mass of particulate retained in a catalyzed particulate filter as a function of measured total pressure drop, volumetric flow rate, exhaust temperature, exhaust gas viscosity and cake and wall permeability applicable to real-time computation is discussed. This methodology is discussed from the view point of using it to indicate when to initiate active regeneration and as an On-Board Diagnostic tool to detect filter failures. Steady-state loading characterization experiments were conducted on a catalyzed diesel particulate filter (CPF) in a Johnson Matthey CCRT® (catalyzed continuously regenerating trap) system. The experiments were performed using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Experiments were conducted at 20, 60 and 75% of full engine load (1120 Nm) and rated speed (2100 rpm) to measure the pressure drop, transient filtration efficiency, particulate mass balance, and gaseous emissions.
Technical Paper

A Modeling Study of the Exhaust Flow Rate and Temperature Effects on the Particulate Matter Thermal Oxidation Occurring during the Active Regeneration of a Diesel Particulate Filter

2015-04-14
2015-01-1044
Numerical models of aftertreatment devices are increasingly becoming indispensable tools in the development of aftertreatment systems that enable modern diesel engines to comply with exhaust emissions regulations while minimizing the cost and development time involved. Such a numerical model was developed at Michigan Technological University (MTU) [1] and demonstrated to be able to simulate the experimental data [2] in predicting the characteristic pressure drop and PM mass retained during passive oxidation [3] and active regeneration [4] of a catalyzed diesel particulate filter (CPF) on a Cummins ISL engine. One of the critical aspects of a calibrated numerical model is its usability - in other words, how useful is the model in predicting the pressure drop and the PM mass retained in another particulate filter on a different engine without the need for extensive recalibration.
Technical Paper

A One-Dimensional Computational Model for Studying the Filtration and Regeneration Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter

2003-03-03
2003-01-0841
A one-dimensional, two layer computational model was developed to predict the behavior of a clean and particulate-loaded catalyzed wall-flow diesel particulate filter (CPF). The model included the mechanisms of particle deposition inside the CPF porous wall and on the CPF wall surface, the exhaust flow field and temperature field inside the CPF, as well as the particulate catalytic oxidation mechanisms accounting for the catalyst-assisted particulate oxidation by the catalytic coating in addition to the conventional particulate thermal oxidation. The paper also develops the methodology for calibrating and validating the model with experimental data. Steady state loading experiments were performed to calibrate and validate the model.
Technical Paper

A Statistical Approach to Determining the Effects of Speed, Load, Oil and Coolant Temperature on Diesel Engine Specific Fuel Consumption

1978-02-01
780971
Experimental Brake Specific Fuel Consumption (BSFC) data are presented for two engines as a function of engine speed, load, outlet coolant temperature and inlet oil temperature. The engines used in the study were the Cummins VT-903 (turbocharged) and the Caterpillar 3208, both being direct-injection and four-cycle. The data were taken for the Cat 3208 engine using a fractional factorial statistical method which reduced the total test matrix from 256 to 64 data points. The experimental data are used in the development of BSFC regression equations as a function of load, speed, outlet coolant temperature and inlet oil temperatures. A mathematical parameter for expressing quantitatively the change of BSFC per 10°F change in coolant and oil temperature is presented. It was found that an increase in the coolant and/or oil temperatures had the effect of reducing BSFC in both engines.
Technical Paper

A Study Describing the Performance of Diesel Particulate Filters During Loading and Regeneration - A Lumped Parameter Model for Control Applications

2003-03-03
2003-01-0842
A computational lumped parameter model (MTU-Filter-Lumped) was developed to describe the performance of diesel particulate filters (DPFs) during loading and regeneration processes. The model was formulated combining three major sub-models: a filtration model, a pressure drop model, and a mass and an energy balance equation for the total filter volume. The first two sub-models have been widely validated in the literature, while the third sub-model is introduced and combined with the first two sub-models in the present study. The three sub-models combined can give a full description of diesel particulate filter behavior during loading and regeneration processes, which was the objective of the present work. The total combined lumped parameter model was calibrated using experimental data from the literature covering a range of experimental conditions, including different catalytic regeneration means and engine operating conditions.
Technical Paper

A Study of the Character and Deposition Rates of Sulfur Species in the EGR Cooling System of a Heavy-Duty Diesel Engine

1999-10-25
1999-01-3566
Various measurement techniques were employed to quantify sulfuric acid deposition levels and concentration of sulfuric acid in the condensate from the recirculated exhaust gas heat exchanger of a 1995 Cummins M11 heavy-duty diesel engine. Methods employed included a modified version of the sulfur species sampling system developed by Kreso et al. (1)*, rinsing the heat exchanger, and experiments employing a condensate collection device (CCD). The modified sampling system was applied to the inlet and outlet of the heat exchanger in order to quantify the changes in various sulfur compounds. Doped sulfur fuel (3300 to 4000 ppm S) was used to increase the concentrations of the various oxides of sulfur (SOx). These tests were performed at mode 9 of the old EPA 13-mode test cycle (1800 RPM, 932N*m) with 17-20% exhaust gas recirculation (EGR) at two EGR outlet temperatures: 160°C and 103°C.
Technical Paper

A Study of the Effect of Oil and Coolant Temperatures on Diesel Engine Brake Specific Fuel Consumption

1977-02-01
770313
Diesel engine fuel consumption is mainly a function of engine component design and power requirements. However, fuel consumption can also be affected by the environment in which the engine operates. This paper considers two controlling parameters of the engine's thermal environment, oil temperature and coolant temperature. The effects of oil and coolant temperatures on Brake Specific Fuel Consumption (BSFC) are established for a turbocharged diesel engine. Data are also presented for a direct injection, naturally aspirated diesel engine. A matrix of test conditions was run on a Cummins VT-903 diesel engine to evaluate the effects of oil and coolant temperatures on BSFC for several loads and speeds. Loads and speeds were selected based on where a typical semi-tractor engine would operate over the road on a hills and curves route. Oil temperature was monitored and controlled between the oil cooler and the engine. Coolant temperature was monitored and controlled at the engine outlet.
Technical Paper

A Study of the Regeneration Characteristics of Silicon Carbide and Cordierite Diesel Particulate Filters Using a Copper Fuel Additive

1997-02-24
970187
The purpose of this research was to study the pressure drop profiles and regeneration temperature characteristics of Silicon Carbide (SiC) filters with and without a copper-based additive in the fuel, and also to compare their performance with two cordierite traps designated as EX-47 and EX-80. The collection of the particulate matter inside the trap imposes a backpressure on the engine which requires a periodic oxidation or regeneration of the particulate matter. The presence of copper additive in the fuel reduces the particulate ignition temperature from approximately 500 to 375°C. Two SiC systems were tested during this research. The first system consisted of one 14 L SiC trap, while the second system, the dual trap system (DTS), consisted of two 12 L SiC traps mounted in parallel. The test matrix included two types of regeneration tests, controlled and uncontrolled and three levels of Cu fuel additive (0, 30, and 60 ppm).
Technical Paper

A Study of the Regeneration Process in Diesel Particulate Traps Using a Copper Fuel Additive

1996-02-01
960136
The goals of this research are to understand the regeneration process in ceramic (Cordierite) monolith traps using a copper fuel additive and to investigate the various conditions that lead to trap regeneration failure. The copper additive lowers the trap regeneration temperature from approximately 500 °C to 375 °C and decreases the time necessary for regeneration. Because of these characteristics, it is important to understand the effect of the additive on regeneration when excessive particulate matter accumulation occurs in the trap. The effects of particulate mass loading on regeneration temperatures and regeneration time were studied for both the controlled (engine operated at full load rated speed) and uncontrolled (trap regeneration initiated at full load rated speed after which the engine was cut to idle) conditions. The trap peak temperatures were higher for the uncontrolled than the controlled regeneration.
Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

A Theoretical and Experimental Study of the Regeneration Process in a Silicon Carbide Particulate Trap Using a Copper Fuel Additive

1997-02-24
970188
The purpose of this study was to investigate the pressure drop and regeneration characteristics of a silicon carbide (SiC) wall-flow diesel particulate filter. The performance of a 25 μm mean pore size SiC dual trap system (DTS) consisting of two 12 liter traps connected in parallel in conjunction with a copper (Cu) fuel additive was evaluated. A comparison between the 25 μm DTS and a 15 μm DTS was performed, in order to show the effect of trap material mean pore size on trap loading and regeneration behavior. A 1988 Cummins LTA 10-300 diesel engine was used to evaluate the performance of the 15 and 25 μm DTS. A mathematical model was developed to better understand the thermal and catalytic oxidation of the particulate matter. For all the trap steady-state loading tests, the engine was run at EPA mode 11 for 10 hours. Raw exhaust samples were taken upstream and downstream of the trap system in order to determine the DTS filtration efficiency.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

Advances in Quantitative Analytical Ferrography and the Evaluation of a High Gradient Magnetic Separator for the Study of Diesel Engine Wear

1982-02-01
821194
Several sources of variation in quantitative analytical ferrography are investigated. A standard ferrography analysis procedure is developed. Normalization of ferrographic data to account for the amount of oil used to make the ferrograms is discussed. Procedures to minimize the errors involved with calculating three quantitative ferrography parameters: the area covered by the large particles, AL (%/ml of oil), the area covered by the small particles, AS (%/ml of oil) and Area Under the Curve, AUC, (%-mm/ml of oil) are outlined. Ferrographic data are presented which show that the volume and dilution ratio of the oil sample being analyzed have a major effect on the accuracy of the analysis. Several variables which influence the area covered readings of the particle deposit on a ferrogram are discussed. The accuracy of quantitative analytical ferrography is assessed.
Technical Paper

An Advanced 1D 2-Layer Catalyzed Diesel Particulate Filter Model to Simulate: Filtration by the Wall and Particulate Cake, Oxidation in the Wall and Particulate Cake by NO2 and O2, and Regeneration by Heat Addition

2006-04-03
2006-01-0467
A numerical model to simulate the filtration and regeneration performance of catalyzed diesel particulate filters (CPFs) was developed at Michigan Technological University (MTU). The mathematical formulation of the model and some results are described. The model is a single channel (inlet and outlet) representation of the flow while the thermal and catalytic regeneration framework is based on a 2-layer approach. The 2-layer model can simulate particulate matter (PM) oxidation by thermal and ‘catalytic’ means of oxidation with O2. Several improvements were made to this basic model and are described in this paper. A model to simulate PM oxidation by NO2/Temperature entering the particulate filter and oxidizing the PM in the two layers of the PM cake was developed. This model can be used to simulate the performance of filters with catalyst washcoats and uncatalyzed filters placed downstream of diesel oxidation catalysts (DOCs), as in the continuously regenerating traps, CRT's®.
Technical Paper

An Emission and Fuel Usage Computer Model for Trucks and Buses

1978-02-01
780630
This paper presents the development of a computer model to simulate fuel usage and emission contributions of the past and future truck and bus population in the United States. The projected future years are beyond 1976 to 1990. The trends in vehicle population growth, yearly miles traveled and ton-miles are also calculated by the model. The model developed is flexible and brings together several technical concepts which reflect recent inputs from industry and government. The formulation of the model is based on a systems approach, in which the several submodels (the "Population," "Mileage," "Fuel Usage," and "Emission") are interrelated. The preliminary quantitative results are discussed to demonstrate the satisfactory performance of the computer model. Increased rates of dieselization are analyzed to determine their effect on reducing fuel consumption and the impact on total emission contributions. The use of the computer model to study an urban area for air quality is discussed.
Technical Paper

An Experimental Investigation into Particulate Matter Oxidation in a Catalyzed Particulate Filter with Biodiesel Blends on an Engine during Active Regeneration

2013-04-08
2013-01-0521
Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF) aftertreatment system. The effects of SME biodiesel blends were investigated to determine the particulate matter (PM) oxidation reaction rates for active regeneration. The experimental data from this study will also be used to calibrate the MTU-1D CPF model [1]. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at a CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also investigated. The PM reaction rate was shown to increase with increasing percent biodiesel in the test fuel as well as increasing CPF temperature.
X