Refine Your Search

Topic

Search Results

Standard

CONTINUOUS FLOW CHEMICAL OXYGEN GENERATORS

2011-08-15
HISTORICAL
AS1304
This Aerospace Standard (AS) provides recommended design guidelines for composition formation, performance, testing and reliability of metal-chlorate-perchlorate class solid chemical oxygen generators, supplying oxygen at essentially ambient pressure, for aircraft whose cabin pressure altitude does not exceed 40,000 feet (12,192 m).
Standard

CREWMEMBER DEMAND OXYGEN MASK FOR TRANSPORT CATEGORY AIRCRAFT

1991-09-01
HISTORICAL
AS8026
This standard covers oxygen masks and breathing valves used with both panel mounted and mask mounted demand and pressure-demand oxygen regulators. Mask mounted oxygen regulators are covered under other standards, but when the mask mounted regulator incorporates an integral exhalation valve, the performance of this valve shall meet the requirements of this standard.
Standard

Chemical Oxygen Supplies

2012-10-08
HISTORICAL
AIR1133A
Solid chemical oxygen supplies of interest to aircraft operations are "chlorate candles" and potassium superoxide (KO2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
Standard

Chemical Oxygen Supplies

2014-10-30
CURRENT
AIR1133B
Solid chemical oxygen supplies of interest to aircraft operations are "chlorate candles" and potassium superoxide (KO2). Chlorate candles are used in passenger oxygen supply units and other emergency oxygen systems, such as submarines and escape devices. Potassium superoxide is not used in aircraft operations but is used in closed-cycle breathing apparatus. Characteristics and applications of both are discussed, with emphasis on chlorate candles.
Standard

Closed-Cycle Protective Breathing Devices

2023-01-26
CURRENT
AIR825/11A
Closed-cycle protective breathing apparatus, commonly referred to as rebreathers, or CCBA provide trained aircrew members or ground personnel with eye and respiratory protection from toxic atmospheres.
Standard

Continuous Flow Chemical Oxygen Generators

2014-06-24
CURRENT
AS1304B
This SAE Aerospace Standard (AS) applies to performance and testing of solid chemical oxygen generators which produce oxygen at essentially ambient pressure for use aboard aircraft whose cabin pressure altitude does not exceed 40,000 ft (about 12,200 m). Portable chemical oxygen devices are covered by AS1303.
Standard

Continuous Flow Chemical Oxygen Generators

2011-06-21
HISTORICAL
AS1304A
This SAE Aerospace Standard (AS) applies to performance and testing of solid chemical oxygen generators which produce oxygen at essentially ambient pressure for use aboard aircraft whose cabin pressure altitude does not exceed 40,000 ft (about 12,200 m). Portable chemical oxygen devices are covered by AS1303.
Standard

Fuel Versus Oxygen: Evaluations and Considerations

2012-04-12
HISTORICAL
AIR5648
Specific Federal Aviation Regulations (FAR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents a possible solution for the most efficient, safe, and optimum flight continuation.
Standard

Fuel Versus Oxygen: Evaluations and Considerations

2018-10-18
CURRENT
AIR5648A
Specific federal aviation regulations (Titled 14 of the United States Code of Federal Regulations, or 14 CFR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a concern to all aircraft, such as single engine types that fly above 10 000 feet and use supplemental oxygen. This document provides a method which can help guide users in developing an oxygen solution for their aircraft.
Standard

Lubricants for Oxygen Use

2020-07-14
CURRENT
AIR4071A
This SAE Aerospace Information Report (AIR) describes two classes of lubricants which, when properly applied, can be used in oxygen systems and components.
Standard

MINIMUM GENERAL STANDARDS FOR OXYGEN SYSTEMS

1991-05-01
HISTORICAL
AS861
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplement the requirements of the detail specification or drawings of specific components or assemblies, e.g., regulators, masks, cylinders, etc. Where a conflict exists between this and detail specifications, detail specifications shall take precedence.
Standard

MINIMUM STANDARD FOR OXYGEN PRESSURE REDUCERS

1991-09-01
HISTORICAL
AS1248
This standard is designed to cover all types of pressure reducers required for oxygen systems and for all performance profiles without regard for a particular inlet pressure or outlet pressure performance curve. Special attention will be given, however, to construction requirements essential in reducers where critical high initial oxygen pressures such as 1850 to 2250 psig (12.76 to 15.51 MN/m2 gauge) at 70° F (21.1° C) are involved.
Standard

Minimum General Standards for Oxygen Systems

2006-04-27
HISTORICAL
AS861A
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplement the requirements of the detail specification or drawings of specific components or assemblies, e.g., regulators, masks, cylinders, etc. Where a conflict exists between this and detail specifications, detail specifications shall take precedence.
Standard

Minimum General Standards for Oxygen Systems

2023-05-10
CURRENT
AS861C
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplements the requirements of the detail specification or drawings of specific components or assemblies (e.g., regulators, masks, cylinders, etc.). Where a conflict exists between this standard and detail specifications, detail specifications shall take precedence.
Standard

Minimum General Standards for Oxygen Systems

2021-08-11
HISTORICAL
AS861B
This standard covers all types of oxygen breathing equipment used in non-military aircraft. It is intended that this standard supplement the requirements of the detail specification or drawings of specific components or assemblies, e.g., regulators, masks, cylinders, etc. Where a conflict exists between this and detail specifications, detail specifications shall take precedence.
Standard

Minimum Standard for Gaseous Oxygen Pressure Reducers

2017-11-07
HISTORICAL
AS1248A
This standard applies to pressure reducers for gaseous breathing oxygen systems and for all performance profiles without regard to particular inlet or outlet pressures. Attention is given, however, to construction requirements for reducers with maximum supply pressures to 2250 psig (155 bar) and reduced pressures of 50 to 150 psig (3.4 to 10.5 bar).
Standard

Minimum Standard for Gaseous Oxygen Pressure Reducers

2020-05-27
CURRENT
AS1248B
This standard applies to pressure reducers for gaseous breathing oxygen systems and for all performance profiles without regard to particular inlet or outlet pressures. Attention is given, however, to construction requirements for reducers with maximum supply pressures to 2250 psig (155 bar) and reduced pressures of 50 to 150 psig (3.4 to 10.5 bar).
Standard

Oxygen Cylinder Installation Guide

2019-04-11
CURRENT
ARP5021B
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12.
X