Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Modeling and Experimental Evaluation of Secondary Air Injection System for a Small SI Engine

2013-10-15
2013-32-9091
In order to comply with the existing emission norms of BSIII in India or EURO III and beyond that also, it is not sufficient to use the catalytic converter technology alone over the wide range of engine operating maps. Different studies across the world have proved that the cost, drivability, operating range against AFR, heat dissipation rate characteristics of catalytic converter limit their use in startup and idling conditions. One common way to tackle this condition is to use the Secondary Air Injection (SAI) system. In this system, small amount of air is injected after the exhaust port to initiate the thermal oxidation of gases. The right amount of air injected at the right time and at right location will reduce the emission by 37-90%. In the following study, SI engine vehicle with single cylinder, 160 cc and having carburetor is used as a test vehicle to evaluate the performance of SAI. The SAI system is modeled in AVL BOOST software and validated against the experimental data.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

120VAC Power Inverters

1983-02-01
830131
Inverters are solid state devices which change DC to 120VAC electricity. They are sufficiently rugged and reliable to make them practical for use on utility vehicles for operating thumpers, tools, lights and induction motor loads. The SCR type rather than the transistor type inverter is generally required for inductive and reactive loads. Static inverters operate from battery input. They provide power without running an engine, but are limited by battery capacity so work best in intermittent load applications. Dynamic inverters operate from alternator input and will handle continuous loads to 7200 watts with truck engine running.
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

24SIAT-0900: Heavy Duty Vehicle Aftertreatment Technologies for the Future: What May Be Required at BSVII?

2024-01-16
2024-26-0149
This paper describes the after-treatment technology that could be used to meet a future BS-VII standard, considering close-coupled SCR (cc-SCR) to help start NOx conversion earlier. Both active (Cu/Fe-SCR based) and passive (V-SCR based) systems have the potential to meet emission limits. V-SCR may be considered in the rear position because V-SCR shows a fast response with very low N2O formation. Next-gen V-SCR technology shows significantly improved performance and durability closer to Cu-SCR. The steady-state NOx conversions over Next-Gen V-SCR were better than BS-VI V-SCR in both fresh and aged-580°C/100h conditions. High durability was also observed after engine aging of 1000h (WHTC + high load). Another big challenge in BS VII could be the PN10 requirement. With enhanced filtration coating (EFC) technology, PN emissions drop drastically in comparison to Euro VI reference without EFC to meet a future BS VII.
Journal Article

3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Low CO2 and NOx Emissions

2010-04-12
2010-01-0590
Today turbo-diesel powertrains offering low fuel consumption and good low-end torque comprise a significant fraction of the light-duty vehicle market in Europe. Global CO₂ regulation and customer fuel prices are expected to continue providing pressure for powertrain fuel efficiency. However, regulated emissions for NO and particulate matter have the potential to further expand the incremental cost of diesel powertrain applications. Vehicle segments with the most cost sensitivity like compacts under 1400 kg weight look for alternatives to meet the CO₂ challenge but maintain an attractive customer offering. In this paper the concepts of downsizing and downspeeding gasoline engines are explored while meeting performance needs through increased BMEP to maintain good driveability and vehicle launch dynamics. A critical enabler for the solution is adoption of gasoline direct injection (GDi) fuel systems.
Technical Paper

3-D Numerical Study of Effect of Injection Parameters Upon the Uniformity of Ammonia in Urea-SCR

2013-11-27
2013-01-2768
Nowadays, due to the stringent engine emission norms, an efficient technique is required to reduce oxides of nitrogen (NOx) from automobiles especially from the lean burn engines. Selective Catalytic Reduction (SCR) is found to be an efficient after treatment method used to reduce oxides of nitrogen (NOx) from the exhaust. However, for light duty vehicles, because of the limited size of the catalysts, ammonia slip nullifies its advantages. Lack of uniformity of ammonia at the SCR monolith entrance causes ammonia slip. This study addresses the effect of injection parameters, location of injector and shape of injector upon the flow parameters, exhaust gas temperature and flow rate. The results obtained from this study provide useful guidelines for optimizing the injection parameters to avoid the ammonia slip. The evaporation of Urea Water Solution (UWS) is also investigated.
Technical Paper

3-D Numerical Study of Flow Mixing in Front of SCR for Different Injection Systems

2007-04-16
2007-01-1578
The urea Selective Catalytic Reduction (SCR) exhaust system has been proved to be the reliable aftertreatment device with the capability of reducing tail pipe NOx emission by 75% to 90%, HC by 50% and Particulate Matter (PM) by 30%. Constrained by increasingly stringent packaging envelope, flow mixing in front of substrate is becoming one of the major concerns to achieve ideal performance of higher NOx conversion and lower ammonia (NH3) slip. Three dimensional CFD simulations are performed in current study to investigate flow mixing phenomenon in a SCR system. First, for a traditional tube injector with single or multiple nozzles, the effects of mass flow rates of injected NH3 and exhaust gas on flow mixing and pressure loss are investigated. Then, a concept of ring shape injector with multiple nozzles are initiated and built for 3-D CFD simulations. The comparisons of flow mixing index and injection pressure are made between two type injectors.
Technical Paper

3-D Numerical Study of Mixing Characteristics of NH3 in Front of SCR

2006-10-16
2006-01-3444
The Urea Selective Catalytic Reduction (SCR) technology is one of the major mature exhaust aftertreatment technologies which are demonstrated to be able to lower tail pipe NOx emission by 90%. The system consists of a urea injection at upstream pipe and a downstream SCR converter. A well mixed flow (exhaust gas and NH3) in front of SCR substrate, which is usually constrained by tight design packaging, is very critical to ensure the desired performance. Current paper addresses the geometrical effects on flow mixing by using three dimensional Computational Fluid Dynamics (CFD) tool. The mixing enhancement is achieved by adding flow mixer. The shapes and locations of flow mixers, as well as the number of blades inside mixer are investigated to show the effect on fluid mixing in downstream along the flow direction. Results show great improvement of flow mixing by adding a delta wing mixer.
Technical Paper

3D Unsteady Modelling of the Loading Process in a Diesel Engine PM-Filter

2007-04-16
2007-01-1132
Particulate Matter (PM) filters are becoming a standard component of Diesel engines exhaust aftertreatment devices to comply with the forthcoming engine emission regulations. However, cost reduction and durability are still critical issues in particular for the integration of the PM-filter with other components of the after-treatment system (e.g. pre-turbo-catalyst, close-coupled-catalyst, PM-filter, SCR). To respect functional (available temperature and gas composition) and space restraints, very complex shapes may result from the design causing tortuous flow patterns and influencing the flow distribution into the PM-filter. Uneven soot distributions in the filter may cause a non-homogeneous development of filter regeneration, leading to failures, for example due to the occurrence of large temperature gradients during the oxidation of soot deposits.
Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
Technical Paper

430LNb - A New Ferritic Wire for Automotive Exhaust Applications

2000-03-06
2000-01-0314
The increasing use of ferritic stainless steels (AISI 409, 439, 436 and 441) in automotive exhaust systems, especially for manifolds and catalytic converter canning, has led the authors to develop a new ferritic welding wire, designated 430LNb. This new material is recommended for the GMAW and GTAW processes and provides better metallurgical compatibility with the ferritic base metals, in terms of both thermal expansion and microstructure. The composition of the new welding wire has been adjusted in order to guarantee an entirely ferritic structure in the welds of ferritic sheet materials, together with good resistance of the welds to both wet corrosion and high temperature oxidation, corresponding to the conditions encountered respectively in the colder and hotter parts of the exhaust line. This is achieved by limitation of the C (<0.02%) and N (<0.02%) contents, stabilisation with Nb, such that Nb > 0.05 + 7 (C + N) and Nb < 0.5%, and a Cr content of 17.8-18.8%.
Technical Paper

A 3.4 kW, 42 V High Efficiency Automotive Power Generation System

2000-08-21
2000-01-3064
A 3.4 kW, 42 V permanent magnet alternator based high power generation system was built and tested in the Delphi R&D laboratory. It is belt driven system with 3.37: 1 pulley ratio. The size of the alternator is slightly less than the production CS-144 Lundell machine with 1/3 less inertia. For cost reasons, the controller uses a single SCR bridge rectifier. The prototype, which is capable of producing 34A/80A at idle/cruising speed, has been tested in the laboratory yielding 84.5%/70.7% efficiencies. Up to cruising speed, the system shows an improvement in full load efficiencies of 5-6 percentile points over a similar 14 V permanent magnet machine with dual SCR bridge. This efficiency improvement is due to the reduction in the converter losses as the current is reduced to one third of its 14 V values even with the same copper losses in both machines.
Technical Paper

A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments

2008-04-14
2008-01-0453
A 3 way catalytic converter (3WCC) model based on a global kinetic model was developed and validated against laboratory scale and engine test bench experiments. Various equivalence ratios and temperatures were tested. A methodology was finalized and applied to calibrate the kinetic constants. Laboratory scale experiments were first used to characterize the reaction mechanism during light-off, including the way reduction and oxidation reactions begin and compete with each other when temperature increases. The numerical results are in good agreement with the laboratory scale light-off results. Also, when adapted to simulate the engine test bench experiments, the model is able to correctly reproduce both the light-off tests and the 3WCC conversion efficiency evolution versus equivalence ratio. A calibration method in two steps was thus established and successfully used. The combination of modeling with experimental work appeared to be a powerful tool to determine the reaction mechanism.
Technical Paper

A Case Study of a Cu-SSZ-13 SCR Catalyst Poisoned by Real-World High Sulfur Diesel Fuel

2020-04-14
2020-01-1319
To meet increasingly stringent diesel engine emission regulations, diesel engines are required to use ultra-low sulfur diesel (ULSD) and are equipped with advanced aftertreatment systems. Cu-SSZ-13 zeolite catalysts are widely used as selective catalytic reduction (SCR) catalysts due to their high NOx reduction and excellent hydrothermal stability. However, active Cu sites of Cu-SSZ-13 catalysts can be poisoned by exposure to engine exhaust sulfur species. This poison effect can be mitigated with the use of ULSD and high temperature exposure from engine operation. On the other hand, ULSD is still not universally available where regulations require it, and vehicles may inadvertently operate with high sulfur diesel fuel (HSD) in some locations. The high concentration of exhaust sulfur species resulting from HSD combustion may rapidly poison the Cu-SSZ-13 SCR catalyst. In this study, the catalytic performance of a sulfur poisoned Cu-SSZ-13 SCR catalyst is analyzed.
Technical Paper

A Chemical Method for the Visualisation of Flow Maldistribution in a Catalytic Converter

1999-12-01
1999-01-3076
Exhaust gas flow maldistribution can strongly affect the performance of catalytic converters. As part of an on-going programme concerned with optimising converter designs, flow maldistribution within catalyst monoliths resulting from the use of different shaped inlet cones was investigated. Computational fluid dynamics (CFD) techniques were used to predict gas velocities within the catalyst, and reaction of low levels of hydrogen sulfide in the gas was used to visualise the velocity profile on monoliths coated with a lead acetate indicator. This was done both in laboratory-scale experiments at room temperature with low flow-rates, and in a vehicle exhaust system under reduced temperature conditions. Flow patterns were produced for an underfloor catalyst system under real driving conditions with this unobtrusive chemical technique.
Technical Paper

A Combined 3D/Lumped Modeling Approach to Ammonia SCR After-treatment Systems: Application to Mixer Designs

2006-04-03
2006-01-0469
In practical applications of ammonia SCR aftertreatment systems using urea as the reductant storage compound, one major difficulty is the often constrained packaging envelope. As a consequence, complete mixing of the urea solution into the exhaust gas stream as well as uniform flow and reductant distribution profiles across the catalyst inlet face are difficult to achieve. This paper discusses a modeling approach, where a combination of 3D CFD and a lumped parameter SCR model enables the prediction of system performance, even with non-uniform exhaust flow and ammonia distribution profiles. From the urea injection nozzle to SCR catalyst exit, each step in the modeling process is described and validated individually. Finally the modeling approach was applied to a design study where the performance of a range of urea-exhaust gas mixing sections was evaluated.
X