Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Combined Physical / Neural Approach for Real-Time Models of Losses in Combustion Engines

2007-04-16
2007-01-1345
Reliable estimation of pumping and friction losses in modern combustion engines allows better control strategies aiming at optimal fuel consumption and emissions. Sophisticated simulation tools enable detailed simulation of losses based as well on physical and thermodynamic laws as well as on design data. Models embedded in these tools however are not real-time capable and cannot be implemented into the programs of the electronic control units (ECU's). In this paper an approach is presented that estimates the pumping and friction losses of a combustion engine with variable valve train (VVT). Particularly the pumping losses strongly depend on the control of variable valve train by ECU. The model is based on a combination of a globally physical structure embedding data driven sub models based on test bed measurements. Losses are separated concerning different component groups (bearings, pistons, etc.).
Technical Paper

A Generic Modeling Approach for Automotive Power Net Consumers

2012-04-16
2012-01-0924
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future automotive electrical networks. Both reliability and performance must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. Often, in order to cope with these requirements, merely an upgrade of the existing wiring harness design is used, resulting in additional complexity, weight, and cost [3]. A characterization of the wiring harness and its electrical consumers facilitates a systematic optimization approach aimed at designing new automotive power networks [1, 5]. Measurement and analysis methods to characterise the thermal behaviour of the wiring harness have been presented and discussed in a previous paper [4] This paper presents and compares two methods aimed at modeling the electrical behavior of consumers at various voltages and temperatures.
Journal Article

A New Approach to the Test, Assessment and Optimization of Robust Electrical Distribution Systems

2013-04-08
2013-01-0396
Both the electrical portion of the powertrain and the rising number of auxiliary systems will considerably increase the electrical power requirements in future vehicles. In addition, multiple voltage supply levels will enhance the complexity of the electrical distribution system (EDS), while strict cost, weight, packaging, and safety constraints must be upheld, posing serious design challenges in terms of robustness, reliability and energy efficiency. Currently, a self-contained integral test or evaluation of the EDS is normally not applied. For such a purpose, quantitative quality criteria are introduced here which allow a comparative assessment of an EDS by addressing the dynamic and static stability of the supply voltage, the reliability of the fusing system, and the ability to provide the required electrical power. The presented approach uses both precisely-defined test scenarios and a comprehensive EDS test bench.
Technical Paper

A New Approach to the Thermal Analysis of Electrical Distribution Systems

2011-04-12
2011-01-1437
The optimum design of an electrical distribution system (EDS) is based on the profound understanding and measurement of its thermal behavior, because this determines wire diameter and insulation material, has a major impact on the fusing strategy, and enables minimizing technical risk. Current methods of calculation require an extensive database, whereas the temperature measurements at selected points with normal sensors allow neither the precise rating of the actual insulation temperature within a wire bundle, nor the determination of the thermal impact of load currents. The presented approach is based on both a new measurement method and on a related evaluation algorithm. A common automotive wire is applied as a sensing device using its resistance temperature coefficient as the measurement principle.
Journal Article

A Statistical Analysis of Electrical Power Requirements in Vehicles

2015-04-14
2015-01-0243
The increasing power and safety requirements of electrical systems present a challenge for future automotive electrical networks. However, the modeling of use-profiles and the overall power consumption of electrical systems proves to be difficult as the number of potential on/off combinations of the loads is tremendous. Furthermore, the operation of some loads is correlated or depends upon the operating conditions. Thus, simple worst-case calculations applied to this complexity often lead to an over-specification of components. The proposed approach is based on the probabilities of loads being in the on-state and their respective interdependencies with each other and with boundary conditions such as time of day. Applying basic statistics and a new iterative algorithm, it allows the calculation of the probability of consumed total power for a given set of boundary conditions and of, very importantly, its expected continuous period.
Technical Paper

A Study on In-Cycle Combustion Control for Gasoline Controlled Autoignition

2016-04-05
2016-01-0754
Gasoline Controlled Auto Ignition offers a high CO2 emission reduction potential, which is comparable to state-of-the-art, lean stratified operated gasoline engines. Contrary to the latter, GCAI low temperature combustion avoids NOX emissions, thereby trying to avoid extensive exhaust aftertreatment. The challenges remain in a restricted operation range due to combustion instabilities and a high sensitivity towards changing boundary conditions like ambient temperature, intake pressure or fuel properties. Once combustion shows instability, cyclic fluctuations are observed. These appear to have near-chaotic behavior but are characterized by a superposition of clearly deterministic and stochastic effects. Previous works show that the fluctuations can be predicted precisely when taking cycle-tocycle correlations into account. This work extends current approaches by focusing on additional dependencies within one single combustion cycle.
Technical Paper

Analysis of Cyclic Fluctuations of Charge Motion and Mixture Formation in a DISI Engine in Stratified Operation

2007-04-16
2007-01-1412
Engine processes are subject to cyclic fluctuations, which a have direct effect on the operating and emission behavior of the engine. The fluctuations in direct injection gasoline engines are induced and superimposed by the flow and the injection. In stratified operation they can cause serious operating problems, such as misfiring. The current state of knowledge on the formation and causes of cyclic fluctuations is rather limited, which can be attributed to the complex nature of flow instabilities. The current investigation analyzes the cyclic fluctuations of the in-cylinder charge motion and the mixture formation in a direct injection gasoline engine using laser-optical diagnostics and numerical 3D-calculation. Optical measurement techniques and pressure indication are used to measure flow, mixture formation, and combustion processes of the individual cycles.
Journal Article

Assessment of the Full Thermodynamic Potential of C8-Oxygenates for Clean Diesel Combustion

2017-09-04
2017-24-0118
Within the Cluster of Excellence “Tailor-Made Fuels from Biomass” (TMFB) at the RWTH Aachen University, two novel biogenic fuels, namely 1-octanol and its isomer dibutyl ether (DBE), were identified and extensively analyzed in respect of their suitability for combustion in a Diesel engine. Both biofuels feature very different properties, especially regarding their ignitability. In previous works of the research cluster, promising synthesis routes with excellent yields for both fuels were found, using lignocellulosic biomass as source material. Both fuels were investigated as pure components in optical and thermodynamic single cylinder engines (SCE). For 1-octanol at lower part load, almost no soot emission could be measured, while with DBE the soot emissions were only about a quarter of that with conventional Diesel fuel. At high part load (2400 min-1, 14.8 bar IMEP), the soot reduction of 1-octanol was more than 50% and for DBE more than 80 % respectively.
Technical Paper

C8-Oxygenates for Clean Diesel Combustion

2014-04-01
2014-01-1253
Within this paper, the two possible alternative and biomass-based fuel candidates Di-n-butyl ether (DNBE) and 1-octanol are investigated with regard to their utilization in a diesel-type engine. In order to asses the fuels emission-reduction potential, both have been tested in a single cylinder engine (SCE) and a high pressure chamber (HPC) in comparison to conventional EN590 diesel at various load points. Due to its reduced reactivity 1-octanol features a longer ignition delay and thus higher degrees of homogenization at start of combustion, whereas DNBE ignites rather rapidly in both the HPC and the engine leading to a predominantly mixing controlled combustion. Thus, both fuels feature completely different combustion characteristics. However, compared to diesel, both fuels contribute to a significant reduction in Filter Smoke Number (FSN) up to a factor of 15.
Technical Paper

Characterization and Test of Automotive Electrical Power Networks

2009-04-20
2009-01-1093
The integration of safety-critical and major power-consuming electrical systems presents a challenge for the development of future vehicle power nets. Reliability and performance of the electrical network must be enhanced in order to guarantee the power supply to essential electrical consumers at a sufficient degree of power quality. This paper presents a test bench for automotive electrical networks based on a hardware-in-the-loop (HiL) platform. The test bench is used to assess the power and temperature behavior of the wiring harness and the connected power consumers. This characterisation facilitates the development of new tailored automotive electrical networks to meet the increased requirements while efficiently using the available resources.
Technical Paper

Characterization of Oxygenated-Fuel Combustion by Quantitative Multiscalar SRS/LIF Measurements in a Diesel-Like Jet

2018-09-28
2018-01-5037
Due to experimental challenges, combustion of diesel-like jets has rarely been characterized by laser-based quantitative multiscalar measurements. In this work, recently developed laser diagnostics for combustion temperature and the concentrations of CO, O2, and NO are applied to a diesel-like jet, using a highly oxygenated fuel. The diagnostic is based on spontaneous Raman scattering (SRS) and laser-induced fluorescence (LIF) methods. Line imaging yields multiscalar profiles across the jet cross section. Measurements turn out to be particularly accurate, because near-stoichiometric combustion occurs in the central region of the jet. Thereby, experimental cross-influences by light attenuation and interfering emissions are greatly reduced compared to the combustion of conventional, sooting diesel fuel jets. This is achieved by fuel oxygenation and enhanced premixing.
Journal Article

Coking Phenomena in Nozzle Orifices of Dl-Diesel Engines

2009-04-20
2009-01-0837
Within a public founded project test cell investigations were undertaken to identify parameters which predominantly influence the development of critical deposits in injection nozzles. A medium-duty diesel engine was operated in two different coking cycles with a zinc-free lubricant. One of the cycles is dominated by rated power, while the second includes a wide area of the operation range. During the experiments the temperatures at the nozzle tip, the geometries of the nozzle orifice and fuel properties were varied. For a detailed analysis of the deposits methods of electron microscopy were deployed. In the course of the project optical access to all areas in the nozzle was achieved. The experiments were evaluated by means of the monitoring of power output and fuel flow at rated power. The usage of a SEM (scanning electron microscope) and a TEM (transmission electron microscope) revealed images of the deposits with a magnification of up to 160 000.
Technical Paper

Cold Start Emission Reduction by Barrier Discharge

2000-10-16
2000-01-2891
Dielectric barrier discharge (DBD) offers the advantage to excite and dissociate molecules in the exhaust gas stream. Those dissociated and excited species are oxidizing or reducing harmful exhaust gas components. The advantage of a plasma chemical system in comparison to a catalytic measure for exhaust gas treatment is the instantaneous activity at ambient temperature from the starting of the engine. The investigations reviewed in this paper are dealing with the plasma chemical oxidation of hydrocarbons in the exhaust gas stream during cold start conditions. The article concerns the design and development of a plasma-system in order to decrease the hydrocarbon emissions from engine start till catalyst light off. Vehicle results in the New European Driving Cycle show a hydrocarbon conversion of more than 42% in the first 11 seconds from engine start. In this period nearly all types of hydrocarbon were reduced.
Technical Paper

Comparing Large Eddy Simulation of a Reacting Fuel Spray with Measured Quantitative Flame Parameters

2018-09-10
2018-01-1720
In order to reduce engine out CO2 emissions, it is a main subject to find new alternative fuels from renewable sources. For identifying the specification of an optimized fuel for engine combustion, it is essential to understand the details of combustion and pollutant formation. For obtaining a better understanding of the flame behavior, dynamic structure large eddy simulations are a method of choice. In the investigation presented in this paper, an n-heptane spray flame is simulated under engine relevant conditions starting at a pressure of 50 bar and a temperature of 800 K. Measurements are conducted at a high-pressure vessel with the same conditions. Liquid penetration length is measured with Mie-Scatterlight, gaseous penetration length with Shadowgraphy and lift-off length as well as ignition delay with OH*-Radiation. In addition to these global high-speed measurement techniques, detailed spectroscopic laser measurements are conducted at the n-heptane flame.
Technical Paper

Comparison of Model Predictions with Temperature Data Sensed On-Board from the Li-ion Polymer Cells of an Electric Vehicle

2012-05-15
2011-01-2443
One of the challenges faced when using Li-ion batteries in electric vehicles is to keep the cell temperatures below a given threshold. Mathematical modeling would indeed be an efficient tool to test virtually this requirement and accelerate the battery product lifecycle. Moreover, temperature predicting models could potentially be used on-board to decrease the limitations associated with sensor based temperature feedbacks. Accordingly, we present a complete modeling procedure which was used to calculate the cell temperatures during a given electric vehicle trip. The procedure includes a simple vehicle dynamics model, an equivalent circuit battery model, and a 3D finite element thermal model. Model parameters were identified from measurements taken during constant current and pulse current discharge tests. The cell temperatures corresponding to an actual electric vehicle trip were calculated and compared with measured values.
Journal Article

Control of the Diesel Combustion Process via Advanced Closed Loop Combustion Control and a Flexible Injection Rate Shaping Tool

2009-09-13
2009-24-0114
The presented paper deals with the set-up and performance of a newly developed control system as well as with achieved engine results. This control system is able to control the entire cylinder pressure trace by using a flexible rate shaping injector and iterative learning control (ILC). Standard thermodynamic cycles, like isobaric and Seiliger cycles, and a newly suggested class of cycles are generated and analyzed on a single cylinder engine. With this control system an extremely flexible tool for optimization of combustion processes is available to exploit the full potential of injection rate- shaping on diesel engines.
Technical Paper

Data-driven Modeling of Thermal Fuses

2018-04-03
2018-01-0768
Both the integration of safety-critical electrical systems and the increasing power requirements in vehicles present a challenge for electrical distribution systems in terms of reliability, packaging, weight, and cost. In this regard, the wire protection device is a key element, as it determines the reliability of the short circuit detection, the immunity against false tripping, and the wire diameters. Currently, in most cases, thermal fuses are used, due to their low cost and robust design. However, the description of their tripping behavior based only on steady-state currents is insufficient for the increasingly complex current profiles in vehicles. Thus, to achieve an optimum dimensioning of a fuse-wire combination, a profound understanding of the thermal behavior of both components under dynamic load conditions is mandatory. However, the FEM tools used for the thermal design of fuses are relatively slow, require huge calculation resources, and must be well-parameterized.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.
Technical Paper

Enhancing BEV Energy Management: Neural Network-Based System Identification for Thermal Control Strategies

2024-07-02
2024-01-3005
Modeling thermal systems in Battery Electric Vehicles (BEVs) is crucial for enhancing energy efficiency through predictive control strategies, thereby extending vehicle range. A major obstacle in this modeling is the often limited availability of detailed system information. This research introduces a methodology using neural networks for system identification, a powerful technique capable of approximating the physical behavior of thermal systems with minimal data requirements. By employing black-box models, this approach supports the creation of optimization-based operational strategies, such as Model Predictive Control (MPC) and Reinforcement Learning-based Control (RL). The system identification process is executed using MATLAB Simulink, with virtual training data produced by validated Simulink models to establish the method's feasibility. The neural networks utilized for system identification are implemented in MATLAB code.
Journal Article

Evaluation of Future Topologies and Architectures for High-Reliability Electrical Distribution Systems

2020-04-14
2020-01-1296
Within the scope of the development of autonomous vehicles, the mandatory reliability requirements of the electrical power supply, and consequently of the electrical distribution system (EDS), are increased considerably. In addition, the overall rising number of electrical functions leads to significantly higher electrical power demands, while strict cost, weight and packaging constraints must be upheld. Current developments focus on adding redundancies, enhancing physical robustness, or dimensioning critical components. New approaches address predictive power management, better diagnostic capabilities, and, the subject of this paper, alternative topologies and architectures [1]. These are derivations of the conventional tree structure, as well as ring- or linear-bus-based zonal architectures, which feature in part distributed storage devices or semiconductor switches that rearrange the power paths in case of a fault [2,3].
X