Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development of Variable Temperature Brake Specific Fuel Consumption Engine Maps

2010-10-25
2010-01-2181
Response Surface Methodology (RSM) techniques are applied to develop brake specific fuel consumption (BSFC) maps of a test vehicle over standard drive cycles under various ambient conditions. This technique allows for modeling and predicting fuel consumption of an engine as a function of engine operating conditions. Results will be shown from Federal Test Procedure engine starts of 20°C, and colder conditions of -7°C. Fueling rates under a broad range of engine temperatures are presented. Analysis comparing oil and engine coolant as an input factor of the model is conducted. Analysis comparing the model to experimental datasets, as well as some details into the modeling development, will be presented. Although the methodology was applied to data collected from a vehicle, the same technique could be applied to engines run on dynamometers.
Technical Paper

Model Validation of the Honda Accord Plug-In

2016-04-05
2016-01-1151
This paper presents the validation of an entire vehicle model of the Honda Accord Plug-in Hybrid Electric Vehicle (PHEV), which has a new powertrain system that can be driven in both series and parallel hybrid drive using a clutch, including thermal aspects. The Accord PHEV is a series-parallel PHEV with about 21 km of all-electric range and no multi-speed gearbox. Vehicle testing was performed at Argonne’s Advanced Powertrain Research Facility on a chassis dynamometer set in a thermal chamber. First, components (engine, battery, motors and wheels) were modeled using the test data and publicly available assumptions. This includes calibration of the thermal aspects, such as engine efficiency as a function of coolant temperature. In the second phase, the vehicle-level control strategy, especially the energy management, was analyzed in normal conditions in both charge-depleting and charge-sustaining modes.
Journal Article

PHEV Energy Management Strategies at Cold Temperatures with Battery Temperature Rise and Engine Efficiency Improvement Considerations

2011-04-12
2011-01-0872
Limited battery power and poor engine efficiency at cold temperature results in low plug in hybrid vehicle (PHEV) fuel economy and high emissions. Quick rise of battery temperature is not only important to mitigate lithium plating and thus preserve battery life, but also to increase the battery power limits so as to fully achieve fuel economy savings expected from a PHEV. Likewise, it is also important to raise the engine temperature so as to improve engine efficiency (therefore vehicle fuel economy) and to reduce emissions. One method of increasing the temperature of either component is to maximize their usage at cold temperatures thus increasing cumulative heat generating losses. Since both components supply energy to meet road load demand, maximizing the usage of one component would necessarily mean low usage and slow temperature rise of the other component. Thus, a natural trade-off exists between battery and engine warm-up.
Technical Paper

Simulation-Based Engine Calibration: Tools, Techniques, and Applications

2004-03-08
2004-01-1264
Calibration of engine management systems requires considerable engineering resources during the development of modern engines. Traditional calibration methods use a combination of engine dynamometer and vehicle testing, but pressure to reduce powertrain development cost and time is driving development of more advanced calibration techniques. In addition, future engines will feature new technology, such as variable valve actuation, that is necessary to improve fuel economy, performance, and emissions. This introduces a greater level of system complexity and greatly increases test requirements to achieve successful calibrations. To address these problems, new simulation tools and procedures have been developed within Delphi to rapidly generate optimized calibration maps. The objective of the work is to reduce calibration effort while fully realizing the potential benefit from advanced engine technology.
Technical Paper

Two-Step Variable Valve Actuation for Fuel Economy, Emissions, and Performance

2003-03-03
2003-01-0029
Variable-Valve Actuation (VVA) provides improvements in engine efficiency, emissions, and performance by changing the valve lift and timing as a function of engine operating conditions. Two-Step VVA systems utilize two discrete valve-lift profiles and may be combined with continuously variable cam phasing. Two-Step VVA systems are relatively simple, low cost and easy to package on new and existing engines, and therefore, are attractive to engine manufacturers. The objective of this work was to optimize Two-Step system design and operation for maximum system benefits. An Early-Intake-Valve-Closing (EIVC) strategy was selected for warmed-up operating conditions, and a Late-Intake-Valve-Opening (LIVO) strategy was selected for the cold start. Engine modeling tools were used to fundamentally understand the thermodynamic and fluid mechanical processes involved.
X