Refine Your Search

Topic

Search Results

Journal Article

A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet

2008-04-14
2008-01-0459
This paper quantifies the potential of electric propulsion systems to reduce petroleum use and greenhouse gas (GHG) emissions in the 2030 U.S. light-duty vehicle fleet. The propulsion systems under consideration include gasoline hybrid-electric vehicles (HEVs), plug-in hybrid vehicles (PHEVs), fuel-cell hybrid vehicles (FCVs), and battery-electric vehicles (BEVs). The performance and cost of key enabling technologies were extrapolated over a 25-30 year time horizon. These results were integrated with software simulations to model vehicle performance and tank-to-wheel energy consumption. Well-to-wheel energy and GHG emissions of future vehicle technologies were estimated by integrating the vehicle technology evaluation with assessments of different fuel pathways. The results show that, if vehicle size and performance remain constant at present-day levels, these electric propulsion systems can reduce or eliminate the transport sector's reliance on petroleum.
Journal Article

A Forward-Looking Stochastic Fleet Assessment Model for Analyzing the Impact of Uncertainties on Light-Duty Vehicles Fuel Use and Emissions

2012-04-16
2012-01-0647
Transport policy research seeks to predict and substantially reduce the future transport-related greenhouse gas emissions and fuel consumption to prevent negative climate change impacts and protect the environment. However, making such predictions is made difficult due to the uncertainties associated with the anticipated developments of the technology and fuel situation in road transportation, which determine the total fuel use and emissions of the future light-duty vehicle fleet. These include uncertainties in the performance of future vehicles, fuels' emissions, availability of alternative fuels, demand, as well as market deployment of new technologies and fuels. This paper develops a methodology that quantifies the impact of uncertainty on the U.S. transport-related fuel use and emissions by introducing a stochastic technology and fleet assessment model that takes detailed technological and demand inputs.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

Aggregate Vehicle Emission Estimates for Evaluating Control Strategies

1994-03-01
940303
Currently, states that are out of compliance with the National Ambient Air Quality Standards must, according to the Clean Air Act Amendments of 1990 (CAAA), develop and implement control strategies that demonstrate specific degrees of reduction in emissions-with the degree of reduction depending upon the severity of the problem. One tool that has been developed to aid regulators in both deciding an appropriate course of action and to demonstrate the desired reductions in mobile emissions is EPA's Mobile 5a emission estimation model. In our study, Mobile 5a has been used to examine the effects of regulatory strategies, as applied to the Northeast United States, on vehicle emissions under worst-case ozone-forming conditions.
Technical Paper

Alternative Fuels: Gas to Liquids as Potential 21st Century Truck Fuels

2000-12-04
2000-01-3422
Modern natural gas-to-liquids (GTL) conversion processes (Fischer-Tropsch liquid fuels (FTL)) offers an attractive means for making synthetic liquid fuels. Military diesel and jet fuels are procured under Commercial Item Description (CID) A-A-52557 (based on ASTM D 975) and MIL-DTL-83133/MIL-DTL-5624 (JP-8/JP-5), respectively. The Single Fuel Forward (single fuel in the battlefield) policy requires the use of JP-8 or JP-5 (JP-8/5). Fuel properties crucial to fuel system/engine performance/operation are identified for both old and new tactical/non-tactical vehicles. The 21st Century Truck program is developing technology for improved safety, reduced harmful exhaust emissions, improved fuel efficiency, and reduced cost of ownership of future military and civilian ground vehicles (in the heavy duty category having gross vehicle weights exceeding 8500 pounds).[1]
Technical Paper

An Investigation of Gasoline Engine Knock Limited Performance and the Effects of Hydrogen Enhancement

2006-04-03
2006-01-0228
A set of experiments was performed to investigate the effects of relative air-fuel ratio, inlet boost pressure, and compression ratio on engine knock behavior. Selected operating conditions were also examined with simulated hydrogen rich fuel reformate added to the gasoline-air intake mixture. For each operating condition knock limited spark advance was found for a range of octane numbers (ON) for two fuel types: primary reference fuels (PRFs), and toluene reference fuels (TRFs). A smaller set of experiments was also performed with unleaded test gasolines. A combustion phasing parameter based on the timing of 50% mass fraction burned, termed “combustion retard”, was used as it correlates well to engine performance. The combustion retard required to just avoid knock increases with relative air-fuel ratio for PRFs and decreases with air-fuel ratio for TRFs.
Technical Paper

Benefits of a Higher Octane Standard Gasoline for the U.S. Light-Duty Vehicle Fleet

2014-04-01
2014-01-1961
This paper explores the benefits that would be achieved if gasoline marketers produced and offered a higher-octane gasoline to the U.S. consumer market as the standard grade. By raising octane, engine knock constraints are reduced, so that new spark-ignition engines can be designed with higher compression ratios and boost levels. Consequently, engine and vehicle efficiencies are improved thus reducing fuel consumption and greenhouse gas (GHG) emissions for the light-duty vehicle (LDV) fleet over time. The main objective of this paper is to quantify the reduction in fuel consumption and GHG emissions that would result for a given increase in octane number if new vehicles designed to use this higher-octane gasoline are deployed. GT-Power simulations and a literature review are used to determine the relative brake efficiency gain that is possible as compression ratio is increased.
Technical Paper

Comparative Analysis of Automotive Powertrain Choices for the Next 25 Years

2007-04-16
2007-01-1605
This paper assesses the potential improvement of automotive powertrain technologies 25 years into the future. The powertrain types assessed include naturally-aspirated gasoline engines, turbocharged gasoline engines, diesel engines, gasoline-electric hybrids, and various advanced transmissions. Advancements in aerodynamics, vehicle weight reduction and tire rolling friction are also taken into account. The objective of the comparison is the potential of anticipated improvements in these powertrain technologies for reducing petroleum consumption and greenhouse gas emissions at the same level of performance as current vehicles in the U.S.A. The fuel consumption and performance of future vehicles was estimated using a combination of scaling laws and detailed vehicle simulations. The results indicate that there is significant potential for reduction of fuel consumption for all the powertrains examined.
Technical Paper

Effects of Charge Motion Control During Cold Start of SI Engines

2006-10-16
2006-01-3399
An experimental study was performed to investigate the effects of various intake charge motion control valves (CMCVs) on mixture preparation, combustion, and hydrocarbon (HC) emissions during the cold start-up process of a port fuel injected spark ignition (SI) engine. Different charge motions were produced by three differently shaped plates in the CMCV device, each of which blocked off 75% of the engine's intake ports. Time-resolved HC, CO and CO2 concentrations were measured at the exhaust port exit in order to achieve cycle-by-cycle engine-out HC mass and in-cylinder air/fuel ratio. Combustion characteristics were examined through a thermodynamic burn rate analysis. Cold-fluid steady state experiments were carried out with the CMCV open and closed. Enhanced charge motion with the CMCV closed was found to shorten the combustion duration, which caused the location of 50% mass fraction burned (MFB) to occur up to 5° CA earlier for the same spark timing.
Technical Paper

Effects of Intake Port Design and Valve Lift on In-Cylinder Flow and Burnrate

1987-11-01
872153
LDA measurements of the flow in a motored engine near TDC of compression have been obtained, along with burnrate data in a firing engine having a near-central spark plug location. Results are reported for two different intake ports and four intake valve lifts varying from 25% to 100% of full lift. Opposite trends of swirl vs valve lift were found for the two ports, and the rms velocity fluctuation was found to be relatively insensitive to changes in valve lift. Regression analysis of the burn duration data was conducted, with swirl ratio and rms as independent variables. The analysis indicated that burn duration decreases with an increase in swirl ratio and/or rms velocity fluctuation. In light of the experimental findings, a new conceptual model is proposed regarding the effect of valve lift on the dissipation of turbulent velocity via changes in the length scale.
Technical Paper

Experimental Study on the Oxidation of Model Gases - Propylene, N-Butane, Acetylene at Ambient Temperature by Non-Thermal Plasma and Photocatalyst

2001-09-24
2001-01-3514
Two features to facilitate chemical reactions at low temperature, non-thermal plasma and the weak dependency of photocatalyst on temperature, have been exploited by many researchers to effectively decompose hydrocarbon emissions emitted until the light-off of a three-way catalyst in spark ignition engines. To develop a realizable emissions reduction reactor, as part of such effort, this study investigates for the three model gases, propylene, n-butane and acetylene: 1) the conversion efficiency of the emissions reduction reactor, which utilizes the effect of dissociation, ionization-by-collision of the non-thermal plasma and the photocatalytic effect of TiO2, and 2) the concentrations of the products such as acetaldehyde, acetic acid, polymerized hydrocarbons and NO2. The operating parameters to obtain the plasma energy density ranging from 7.8 to 908 J/L were varied.
Technical Paper

Experimental and Theoretical Analysis of Wankel Engine Performance

1978-02-01
780416
A model for predicting the performance and emissions characteristics of Wankel engines has been developed and tested. Each chamber is treated as an open thermodynamic system and the effects of turbulent flame propagation, quench layer formation, gas motion, heat transfer and seal leakage are included. The experimental tests were carried out on a Toyo Kogyo 12B engine under both motoring and firing conditions and values for the effective seal leakage area and turbulent heat transfer coefficient were deduced. The agreement between the predicted and measured performances was reasonable. Parametric studies of the effects of reductions in seal leakage and heat transfer were carried out and the results are presented.
Technical Paper

Flame propagation measurement using ionization probes during fast acceleration

2000-06-12
2000-05-0157
Flame propagation was detected with ionization probes located at a spark plug and a head gasket to study the relations of ionization signal to the flame propagation period. Five ionization probes were inserted at a spark plug to detect the initial flame development and eight ionization probes were inserted at a head gasket to detect the overall flame propagation. Experiments were done while the A/F ratio, load and engine speed were varied. In the fast acceleration period, lean peak phenomenon due to the fuel wall wetting occurred for one or two cycles. Ionization signals were used to determine the flame propagation duration during fast acceleration and the lean peak could be avoided by injecting proper amount of fuel.
Technical Paper

Future Light-Duty Vehicles: Predicting their Fuel Consumption and Carbon-Reduction Potential

2001-03-05
2001-01-1081
The transportation sector in the United States is a major contributor to global energy consumption and carbon dioxide emission. To assess the future potentials of different technologies in addressing these two issues, we used a family of simulation programs to predict fuel consumption for passenger cars in 2020. The selected technology combinations that have good market potential and could be in mass production include: advanced gasoline and diesel internal combustion engine vehicles with automatically-shifting clutched transmissions, gasoline, diesel, and compressed natural gas hybrid electric vehicles with continuously variable transmissions, direct hydrogen, gasoline and methanol reformer fuel cell hybrid electric vehicles with direct ratio drive, and battery electric vehicle with direct ratio drive.
Technical Paper

Lean-Burn Characteristics of a Gasoline Engine Enriched with Hydrogen Plasmatron Fuel Reformer

2003-03-03
2003-01-0630
When hydrogen is added to a gasoline fueled spark ignition engine the lean limit of the engine can be extended. Lean running engines are inherently more efficient and have the potential for significantly lower NOx emissions. In the engine concept examined here, supplemental hydrogen is generated on-board the vehicle by diverting a fraction of the gasoline to a plasmatron where a partial oxidation reaction is initiated with an electrical discharge, producing a plasmatron gas containing primarily hydrogen, carbon monoxide, and nitrogen. Two different gas mixtures were used to simulate the plasmatron output. An ideal plasmatron gas (H2, CO, and N2) was used to represent the output of the theoretically best plasmatron. A typical plasmatron gas (H2, CO, N2, and CO2) was used to represent the current output of the plasmatron. A series of hydrogen addition experiments were also performed to quantify the impact of the non-hydrogen components in the plasmatron gas.
Technical Paper

Modeling the Effect of Swirl on Turbulence Intensity and Burn Rate in S.I. Engines and Comparison with Experiment

1986-02-01
860325
An Engine Simulation Model was used to study the effect of in-cylinder swirl level on turbulence intensity and burn rate while holding the inducted kinetic energy constant. Experimental measurements of burn rate for three different swirl levels were obtained and compared with model predictions. The turbulence model used previously did not include wall shear effects and showed little enhancement of turbulence due to swirl, causing small changes in predicted burn rate when the swirl level was changed. An improved turbulence model is proposed which includes production of turbulence due to wall shear effects. Turbulence intensity predictions from the improved model resulted in excellent agreement between the measured and predicted burn rates as swirl level was changed. In addition, the model was used to predict the effect of swirl levels on ISFC. Results showed that ISFC changes were overall small for the range of swirl levels considered.
Technical Paper

Predictions of In-Cylinder Swirl Velocity and Turbulence Intensity for an Open Chamber Cup in Piston Engine

1981-02-01
810224
A flow model is presented that predicts the swirl and turbulent velocities in an open chamber, cup-in-piston I.C. engine. The swirl model is based on an integral formulation of the angular momentum equation solved with an assumed tangential velocity profile form, Vθ(r). This enables the swirl model to predict a non-solid body rotation which is a function of the inlet flow, wall shear and squish motion during the engine cycle. The mean flow model is coupled with a global K-ε model which together predict shear stresses, mixing rates and heat transfer coefficients. An integrated form of the K-ε turbulence model is used which includes the compressibility, shear and boundary layer effects. Turbulence generated by the inlet flow is included and assumed to be proportional to the velocity past the intake valve. Also, the production of turbulence due to the boundary layer effects are included.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Technical Paper

The Dispersion of Pollutants from Aircraft

1971-02-01
710322
Two aspects of the dispersion of pollutants from aircraft are reviewed. The first is the dispersal of aircraft exhaust emissions in the vicinity of airports; the second is the dispersal of exhaust trails in the upper atmosphere. Techniques available for modeling this dispersal and how they might be applied to the airport problem are discussed. Field studies of airport pollution are then reviewed to assess current pollutant levels around airports and the aircraft's contribution to those levels. The possibility of contrail formation from jet emissions at high altitude is then considered and the effect of uncertainties in the trail mixing processes evaluated.
Technical Paper

The Effect of In-Cylinder Flow Processes (Swirl, Squish and Turbulence Intensity) on Engine Efficiency — Model Predictions

1982-02-01
820045
A computer simulation for the performance of a four-stroke spark-ignition engine is used to assess the effects of in-cylinder flow processes on engine efficiency. The engine simulation model is a thermodynamic model coupled to submodels for the various physical processes of in-cylinder swirl, squish and turbulent velocities, heat transfer and flame propagation. The swirl and turbulence models are based on an integral formulation of the angular momentum equation and a K-ε turbulence model, These models account for the effects of changes in geometry of the intake system and the chamber design on in-cylinder flow processes. The combustion model is an entrainment burn-up model applicable to the mixing controlled region of turbulent flame propagation. The flame is assumed to propagate spherically from one or two spark plug locations. A heat transfer model that is dependent upon the turbulence level is used to compute the heat loss from the unburned and burned gases.
X