Refine Your Search

Topic

Author

Search Results

Technical Paper

A Study of Control Strategy for Combution Mode Switching Between HCCI and SI With the Blowdown Supercharging System

2012-04-16
2012-01-1122
To find an ignition and combustion control strategy in a gasoline-fueled HCCI engine equipped with the BlowDown SuperCharging (BDSC) system which is previously proposed by the authors, a one-dimensional HCCI engine cycle simulator capable of predicting the ignition and heat release of HCCI combustion was developed. The ignition and the combustion models based on Livengood-Wu integral and Wiebe function were implemented in the simulator. The predictive accuracy of the developed simulator in the combustion timing, combustion duration and heat release rate was validated by comparing to experimental results. Using the developed simulator, the control strategy for the engine operating mode switching between HCCI and SI combustion was explored with focus attention on transient behaviors of air-fuel ratio, A/F, and gas-fuel ratio, G/F.
Technical Paper

A Study of Gasoline-fuelled HCCI Engine Equipped with an Electromagnetic Valve Train

2004-06-08
2004-01-1898
Schemes to extend the operational region of gasoline compression ignition were explored using single (optial) and 4-cylinder 4-stroke engines equipped with an electromagnetic valve train. This report focuses mainly on the use of direct fuel injection devices (multi-hole and pintle types),exhaust gas recirculation (EGR) through valve timing, and their effects on the compression ignition operating ranges, and emissions. Also considered is charge boost HCCI using a mechanical supercharger. The results indicated that use of either direct fuel injection or charge boost increased (relative to homogeneous charge operation using port injection) the upper load range from an IMEP peak of about 400 kPa to 650 kPa, but the use of direct fuel injection deteriorated both the co-variation in IMEP (up to about 6%) and the NOX emission levels (up to about 8 g/kWh). In contrast, charge boost retained the very low NOx emission levels of port injection HCCI.
Journal Article

A Study of Newly Developed HCCI Engine With Wide Operating Range Equipped With Blowdown Supercharging System

2011-08-30
2011-01-1766
To extend the operating range of a gasoline HCCI engine, the blowdown supercharging (BDSC) system and the EGR guide were developed and experimentally examined. The concepts of these techniques are to obtain a large amount of dilution gas and to generate a strong in-cylinder thermal stratification without an external supercharger for extending the upper load limit of HCCI operation whilst keeping dP/dθmax and NOx emissions low. Also, to attain stable HCCI operation using the BDSC system with wide operating conditions, the valve actuation strategy in which the amount of dilution gas is smaller at lower load and larger at higher load was proposed. Additionally to achieve multi-cylinder HCCI operation with wide operating range, the secondary air injection system was developed to reduce cylinder-to-cylinder variation in ignition timing. As a result, the acceptable HCCI operation could be achieved with wide operating range, from IMEP of 135 kPa to 580 kPa.
Technical Paper

A Study of a Lean Homogeneous Combustion Engine System with a Fuel Reformer Cylinder

2019-12-19
2019-01-2177
The Dual-Fuel (DF) combustion is a promising technology for efficient, low NOx and low exhaust particulate matter (PM) engine operation. To achieve equivalent performance to a DF engine with only the use of conventional liquid fuel, this study proposes the implementation of an on-board fuel reformation process by piston compression. For concept verification, DF combustion tests with representative reformed gas components were conducted. Based on the results, the controllability of the reformed gas composition by variations in the operating conditions of the reformer cylinder were discussed.
Technical Paper

A Study on Ignition Timing and Combustion Switching Control of Gasoline HCCI Engine

2009-04-20
2009-01-1128
As for homogeneous charge compression ignition (HCCI) combustion, many parameters influence on self-ignition timing. We formulated a self-ignition timing simulation model. A control algorithm for HCCI engine has been formulated on the basis of this self-ignition timing simulation model. And the application of the control algorithm to a 4-cylinder engine provided with an electromagnetic valve train demonstrated that it was possible to control HCCI combustion in response to operating conditions. In addition, when switching between spark ignition and HCCI operation, the control algorithm for HCCI engine compensating for the difference in exhaust temperature and the fuel wall-wetting compensating algorithm have enabled switching without torque shock.
Technical Paper

Achievement of Stable and Clean Combustion Over a Wide Operating Range in a Spark-Assisted IDI Diesel Engine with Neat Ethanol

1984-02-01
840517
Spark-assisted diesel engines operated with alcohol fuels usually display misfiring or knocking problems. This paper presents an analysis of the factors influencing the ignition characteristics of ethanol in a swirl chamber diesel engine with a multi-spark ignitor. In the experiments, cycle-to-cycle combustion variations and the degree of knocking were investigated by changing engine parameters over a wide operating range. The results of the investigations showed that stable ignition and smooth combustion is achieved when a flammable mixture is formed in the vicinity of the spark plug when only a small amount of the injected fuel has evaporated. By optimizing the design factors, operation with high efficiency and low exhaust emissions was achieved.
Technical Paper

An Experimental Study of a Gasoline HCCI Engine Using the Blow-Down Super Charge System

2009-04-20
2009-01-0496
The objective of this study is to extend the high load operation limit of a gasoline HCCI engine. A new system extending the high load HCCI operation limit was proposed, and the performance of the system was experimentally demonstrated. The proposed system consists of two new techniques. The first one is the “Blow-down super charging (BDSC) system”, in which, EGR gas can be super charged into a cylinder during the early stage of compression stroke by using the exhaust blow-down pressure wave from another cylinder phased 360 degrees later/earlier in the firing order. The other one is “EGR guide” for generating a large thermal stratification inside the cylinder to reduce the rate of in-cylinder pressure rise (dP/dθ) at high load HCCI operation. The EGR guides consist of a half-circular part attached on the edge of the exhaust ports and the piston head which has a protuberant surface to control the mixing between hot EGR gas and intake air-fuel mixture.
Technical Paper

An Investigation of the Transient DPF Pressure Drop under Cold Start Conditions in Diesel Engines

2017-10-08
2017-01-2372
To monitor emission-related components/systems and to evaluate the presence of malfunctioning or failures that can affect emissions, current diesel engine regulations require the use of on-board diagnostics (OBD). For diesel particulate filters (DPF), the pressure drop across the DPF is monitored by the OBD as the pressure drop is approximately linear related to the soot mass deposited in a filter. However, sudden acceleration may cause a sudden decrease in DPF pressure drop under cold start conditions. This appears to be caused by water that has condensed in the exhaust pipe, but no detailed mechanism for this decrease has been established. The present study developed an experimental apparatus that reproduces rapid increases of the exhaust gas flow under cold start conditions and enables independent control of the amount of water as well as the gas flow rate supplied to the DPF.
Technical Paper

Analysis of Ambient Gas Entrainment Processes in Intermittent Gas Jets by LIFA Technique

1996-02-01
960835
Time-resolved and local ambient gas entrainment processes in intermittent gas jets with a range of injection conditions were evaluated by a LIFA (Laser-Induced Fluorescence of Ambient gas) technique. The gas injection conditions tested were: mean discharge velocity, um; mean discharge turbulence intensity, u′m; kinematic viscosity of the gas jet, ν; specific gravity of the gas jet, ρj; and of the ambient gas, ρa. Experimental results showed that the entrainment of jets are enhanced with higher eddy kinematic viscosity, νt, measured by a hot wire anemometer. In conclusion, the mean jet concentration was approximated with only one parameter, (ρj/ρa)D2/[(ν+νt)Δt].
Technical Paper

Analysis of Diesel Soot Formation under Varied Ignition Lag with a Laser Light Extinction Method

1990-02-01
900640
Soot emission from diesel engines generally increases with shorter ignition lags. However, the detailed process and mechanism of this phenomenon has not been well understood. This investigation attempts to observe and analyze the in-chamber soot formation process at various ignition lags by high-speed photography of the direct flame images and laser shadowgraphs as well as the laser light extinction. In the experiment, the separation of soot concentration from the soot-fuel mixture concentration was established by subtracting the laser light extinction intensity through a non-firing chamber from that through a firing chamber. It was found that the soot concentration in the swirl chamber reached a maximum value immediately after the start of combustion, and then decreased rapidly. With shorter ignition lags, the maximum and final soot concentrations in the chamber increased.
Journal Article

Analysis of the Trade-off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation

2011-08-30
2011-01-1847
This study makes use of the detailed mechanisms of n-heptane combustion, from gas reactions to soot particle formation and oxidation, and a two-stage model based on the CHEMKIN reactor network is developed and used to investigate the trade-off between soot and NOx emissions. The effects of the equivalence ratio, EGR, ambient pressure and temperature, and initial particle diameter are observed for various residence times. The results show that high rates of NOx formation are unavoidable under conditions where high reduction rates of soot particles are obtained. This suggests that suppression of the amount of soot during the formation stage is essential for simultaneous reductions in engine-out soot and NOx emissions.
Technical Paper

Catalytic Effects of Metallic Fuel Additives on Oxidation Characteristics of Trapped Diesel Soot

1988-09-01
881224
The oxidations of Crapped diesel soots containing catalytic metals such as Ca, Ba, Fe, or Ni were characterized through thermogravimetric analysis with a thermobalance. Soot particles were generated by a single cylinder IDI diesel engine with metallic fuel additives. A two-stage oxidation process was observed with the metalcontalning soots. It was found that the first stage of oxidation is catalytically promoted by metal additives resulting in an enhanced reaction rate and a reduced activation energy. Soot reduction in the rapid first stage increases with increases in metal content. Soots containing Ba and Ca are oxidized most rapidly due to the larger reduction during the first stage. The second stage of oxidation is also slightly promoted by metal addition. The ignition temperature of the collected soot is substantially reduced by the metal additives.
Technical Paper

Characteristics of Diesel Combustion in Low Oxygen Mixtures with Ultra-High EGR

2006-04-03
2006-01-1147
Ultra-low NOx and smokeless operation at higher loads up to half of the rated torque is attempted with large ratios of cold EGR. NOx decreases below 6 ppm (0.05 g/(kW·h)) and soot significantly increases when first decreasing the oxygen concentration to 16% with cold EGR, but after peaking at 12-14% oxygen, soot then deceases sharply to essentially zero at 9-10% oxygen while maintaining ultra low NOx and regardless of fuel injection quantity. However, at higher loads, with the oxygen concentration below 9-10%, the air/fuel ratio has to be over-rich to exceed half of rated torque, and thermal efficiency, CO, and THC deteriorate significantly. As EGR rate increases, exhaust gas emissions and thermal efficiency vary with the intake oxygen content rather than with the excess air ratio.
Technical Paper

Characteristics of Diesel Soot Suppression with Soluble Fuel Additives

1987-09-01
871612
Experiments on a large number of soluble fuel additives were systematically conducted for diesel soot reduction. It was found that Ca and Ba were the most effective soot suppressors. The main determinants of soot reduction were: the metal mol-content of the fuel, the excess air factor, and the gas turbulence in the combustion chamber. The soot reduction ratio was expressed by an exponential function of the metal mol-content in the fuel, depending on the metal but independent of the metal compound. A rise in excess air factor or gas turbulence increased the value of a coefficient in the function, resulting in larger reductions in soot with the fuel additives. High-speed soot sampling from the cylinder showed that with the metal additive, the soot concentration in the combustion chamber was substantially reduced during the whole period of combustion. It is thought that the additive acts as a catalyst not only to improve soot oxidation but also to suppress soot formation.
Technical Paper

Characteristics of Smokeless Low Temperature Diesel Combustion in Various Fuel-Air Mixing and Expansion of Operating Load Range

2009-04-20
2009-01-1449
The characteristics of smokeless low temperature diesel combustion in various fuel-air mixing was investigated by engine tests with high rates of cooled exhaust gas recirculation (EGR), three compression ratios, and fuels of various cetane numbers, as well as by computational fluid dynamics (CFD) simulation of the in-cylinder distributions of mixture concentration and temperature. The results show that besides combustion temperature, fuel-air mixing is also vital to efficient, smokeless, and low NOx diesel combustion. Smokeless and low NOx diesel combustion can be realized even with insufficient fuel-air mixing as long as the combustion temperature is sufficiently low. However low combustion temperature and insufficient oxygen due to ultra-high EGR cause very high UHC and CO emissions, and a severe deterioration in combustion efficiency.
Technical Paper

Characteristics of Unburned Hydrocarbon Emissions in a Low Compression Ratio DI Diesel Engine

2009-04-20
2009-01-1526
In a DI diesel engine, THC emissions increase significantly with lower compression ratios, a low coolant temperature, or during the transient state. During the transient after a load increase, THC emissions are increased significantly to very high concentrations from just after the start of the load increase until around the 10th cycle, then rapidly decreased until the 20th cycle, before gradually decreasing to a steady state value after 1000 cycles. In the fully-warmed steady state operation with a compression ratio of 16 and diesel fuel, THC is reasonably low, but THC increases with lower coolant temperatures or during the transient period just after increasing the load. This THC increase is due to the formation of over-lean mixture with the longer ignition delay and also due to the fuel adhering to the combustion chamber walls. A low distillation temperature fuel such as normal heptane can eliminate the THC increase.
Technical Paper

Characterization of Low Temperature Diesel Combustion with Various Dilution Gases

2007-04-16
2007-01-0126
The effects of intake dilution with various dilution gases including nitrogen, argon, and carbon dioxide on low temperature diesel combustion were investigated in a naturally aspirated DI diesel engine to understand the mechanism of the simultaneous reductions in smoke and NOx with ultra-high EGR. NOx almost completely disappears with the intake oxygen concentration diluted below 16% regardless of the kind of dilution gas. Smoke emissions decrease with increased heat capacity of the charged gas due to promotion of mixture homogeneity with longer ignition delays. Intake dilution with the 36% CO2 + 64% Ar mixture which has a similar specific heat capacity as N2 shows lower smoke emissions than with N2. Chemical kinetics analysis shows that carbon dioxide may help to reduce NOx and soot by lowering the reaction temperature as well as by changing the concentrations of some radicals or/and species related to soot and NOx formation.
Technical Paper

Chemical Kinetic Analysis with Two-Zone Model on Spark Knock Suppression Effects with Hydrogen Addition at Low and High Engine Speeds

2022-01-09
2022-32-0089
Spark knock suppression with hydrogen addition was investigated at two engine speeds (2000 rpm and 4800 rpm). The experimental results showed that the spark knock is strongly suppressed with increasing hydrogen fraction at 2000 rpm while the effect is much smaller at 4800 rpm. To explain these results, chemical kinetic analyses with a two-zone combustion model were performed. The calculated results showed that the heat release in the end gas zone rises in two stages with a remarkable appearance of low temperature oxidation (LTO) at 2000 rpm, while a single stage heat release without apparent LTO process is presented at 4800 rpm due to the shorter residence time in the low temperature region.
Journal Article

Chemical Reaction Processes of Fuel Reformation by Diesel Engine Piston Compression of Rich Homogeneous Air-Fuel Mixture

2017-11-15
2017-32-0120
To extend the operational range of premixed diesel combustion, fuel reformation by piston induced compression of rich homogeneous air-fuel mixtures was conducted in this study. Reformed gas compositions and chemical processes were first simulated with the chemistry dynamics simulation, CHEMKIN Pro, by changing the intake oxygen content, intake air temperature, and compression ratio. A single cylinder diesel engine was utilized to verify the simulation results. With the simulation and experiments, the characteristics of the reformed gas with respect to the reformer cylinder operating condition were obtained. Further, the thermal decomposition and partial oxidation reaction mechanisms of the fuel in extremely low oxygen concentrations were obtained with the characteristics of the gas production at the various reaction temperatures.
Technical Paper

Chemical-Kinetic Analysis on PAH Formation Mechanisms of Oxygenated Fuels

2003-10-27
2003-01-3190
The thermal cracking and polyaromatic hydrocarbon (PAH) formation processes of dimethyl ether (DME), ethanol, and ethane were investigated with chemical kinetics to determine the soot formation mechanism of oxygenated fuels. The modeling analyzed three processes, an isothermal constant pressure condition, a temperature rising condition under a constant pressure, and an unsteady condition approximating diesel combustion. With the same mole number of oxygen atoms, the DME rich mixtures form much carbon monoxide and methane and very little non-methane HC and PAH, in comparison with ethanol or ethane mixtures. This suggests that the existence of the C-C bond promotes the formation of PAH and soot.
X