Refine Your Search

Topic

Search Results

Technical Paper

2-Stroke Externally Scavenged Engines for Range Extender Applications

2012-04-16
2012-01-1022
In this work, the authors assess the potential of the 2-stroke concept applied to Range Extender engines, proposing 3 different configurations: 1) Supercharged, Compression Ignition; 2) Turbocharged, Compression Ignition; 3) Supercharged, Gasoline Direct Injection. All the engines feature a single power cylinder of 0.49l, external air feed by piston pump and an innovative induction system. The scavenging is of the Loop type, without poppet valves, and with a 4-stroke like lubrication system (no crankcase pump). Engine design has been supported by CFD simulations, both 1D (engine cycle analysis) and 3D (scavenging, injection and combustion calculations). All the numerical models used in the study are calibrated against experiments, carried out on engines as similar as possible to the proposed ones.
Journal Article

2-Stroke High Speed Diesel Engines for Light Aircraft

2011-09-11
2011-24-0089
The paper describes a numerical study, supported by experiments, on light aircraft 2-Stroke Direct Injected Diesel engines, typically rated up to 110 kW (corresponding to about 150 imperial HP). The engines must be as light as possible and they are to be directly coupled to the propeller, without reduction drive. The ensuing main design constraints are: i) in-cylinder peak pressure as low as possible (typically, no more than 120 bar); ii) maximum rotational speed limited to 2600 rpm. As far as exhaust emissions are concerned, piston aircraft engines remain unregulated but lack of visible smoke is a customer requirement, so that a value of 1 is assumed as maximum Smoke number. For the reasons clarified in the paper, only three cylinder in line engines are investigated. Reference is made to two types of scavenging and combustion systems, designed by the authors with the assistance of state-of-the-art CFD tools and described in detail in a parallel paper.
Journal Article

A Modeling Study of Cyclic Dispersion Impact on Fuel Economy for a Small Size Turbocharged SI Engine

2016-10-17
2016-01-2230
In this paper, the results of an extensive experimental analysis regarding a twin-cylinder spark-ignition turbocharged engine are employed to build up an advanced 1D model, which includes the effects of cycle-by-cycle variations (CCVs) on the combustion process. Objective of the activity is to numerically estimate the CCV impact primarily on fuel consumption and knock behavior. To this aim, the engine is experimentally characterized in terms of average performance parameters and CCVs at high and low load operation. In particular, both a spark advance and an air-to-fuel ratio (α) sweep are actuated. Acquired pressure signals are processed to estimate the rate of heat release and the main combustion events. Moreover, the Coefficient of Variation of IMEP (CoVIMEP) and of in-cylinder peak pressure (CoVpmax) are evaluated to quantify the cyclic dispersion and identify its dependency on peak pressure position.
Technical Paper

A Non-Linear Regression Technique to Estimate from Vibrational Engine Data the Instantaneous In-Cylinder Pressure Peak and Related Angular Position

2016-10-17
2016-01-2178
In this paper, a downsized twin-cylinder turbocharged spark-ignition engine is experimentally investigated at test-bench in order to verify the potential to estimate the peak pressure value and the related crank angle position, based on vibrational data acquired by an accelerometer sensor. Purpose of the activity is to provide the ECU of additional information to establish a closed-loop control of the spark timing, on a cycle-by-cycle basis. In this way, an optimal combustion phasing can be more properly accomplished in each engine operating condition. Engine behavior is firstly characterized in terms of average thermodynamic and performance parameters and cycle-by-cycle variations (CCVs) at high-load operation. In particular, both a spark advance and an A/F ratio sweep are actuated. In-cylinder pressure data are acquired by pressure sensors flush-mounted within the combustion chamber of both cylinders.
Technical Paper

An Analytical Assessment of the CO2 Emissions Benefit of Two-Stroke Diesel Engines

2016-04-05
2016-01-0659
Two-stroke diesel engines could be a promising solution for reducing carbon dioxide (CO2) emissions from light-duty vehicles. The main objective of this study was to assess the potential of two-stroke engines in achieving a substantial reduction in CO2 emissions compared to four-stroke diesel baselines. As part of this study 1-D models were developed for loop scavenged two-stroke and opposed piston two-stroke diesel engine concepts. Based on the engine models and an in-house vehicle model, projections were made for the CO2 emissions for a representative light-duty vehicle over the New European Driving Cycle and the Worldwide Harmonized Light Vehicles Test Procedure. The loop scavenged two-stroke engine had about 5-6% lower CO2 emissions over the two driving cycles compared to a state of the art four-stroke diesel engine, while the opposed piston diesel engine had about 13-15% potential benefit.
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Technical Paper

An Innovative Hybrid Powertrain for Small and Medium Boats

2018-04-03
2018-01-0373
Hybridization is a mainstream technology for automobiles, and its application is rapidly expanding in other fields. Marine propulsion is one such field that could benefit from electrification of the powertrain. In particular, for boats to sail in enclosed waterways, such as harbors, channels, lagoons, a pure electric mode would be highly desirable. The main challenge to accomplish hybridization is the additional weight of the electric components, in particular the batteries. The goal of this project is to replace a conventional 4-stroke turbocharged Diesel engine with a hybrid powertrain, without any penalty in terms of weight, overall dimensions, fuel efficiency, and pollutant emissions. This can be achieved by developing a new generation of 2-Stroke Diesel engines, and coupling them to a state-of-the art electric system. For the thermal units, two alternative designs without active valve train are considered: opposed piston and loop scavenged engines.
Technical Paper

Analysis of In-Cylinder Turbulent Air Motion Dependence on Engine Speed

1994-03-01
940284
In-cylinder cycle-resolved LDV measurements have been made in a diesel engine having a high-squish re-entrant combustion chamber with compression ratio of 21:1. The engine has been motored in the range of 1000 to 3000 rpm thanks to the use of self-lubricating seeding particles. Conventional ensemble-averaging and filtering techniques have been used for analyzing instantaneous velocity data obtained at two points along a diameter located in a horizontal plane at 5 mm below the engine head. The dependence of the mean motion and turbulence on engine speed has been evaluated. The effect of cut-off frequency selection on turbulence values has been also analyzed. Moreover, the Kolmogorov's -5/3 power domain has been investigated in detail by spectral analysis on the instantaneous velocity data.
Journal Article

Butanol-Diesel Blend Spray Combustion Investigation by UV-Visible Flame Emission in a Prototype Single Cylinder Compression Ignition Engine

2015-09-06
2015-24-2435
The paper reports the results of an experimental investigation carried out in a prototype optically accessible compression ignition engine fuelled with different blends of commercial diesel and n-butanol. Thermodynamic analysis and exhaust gas measurements were supported by optical investigations performed through a wide optical access to the combustion chamber. UV-visible digital imaging and 2D chemiluminescence were applied to characterize the combustion process in terms of spatial and temporal occurrence of auto-ignition, flame propagation, soot and OH evolution. The paper illustrates the results of the spray combustion for diesel and n-butanol-diesel blends at 20% and 40% volume fraction, exploring a single and double injection strategy (pilot+main) from a common rail multi-jet injection system. Tests were performed setting a pilot+main strategy with a fixed dwell time and different starts of injection.
Journal Article

CFD Analyses on 2-Stroke High Speed Diesel Engines

2011-09-11
2011-24-0016
In recent years, interest has been growing in the 2-Stroke Diesel cycle, coupled to high speed engines. One of the most promising applications is on light aircraft piston engines, typically designed to provide a top brake power of 100-200 HP with a relatively low weight. The main advantage yielded by the 2-Stroke cycle is the possibility to achieve high power density at low crankshaft speed, allowing the propeller to be directly coupled to the engine, without a reduction drive. Furthermore, Diesel combustion is a good match for supercharging and it is expected to provide a superior fuel efficiency, in comparison to S.I. engines. However, the coupling of 2-Stroke cycle and Diesel combustion on small bore, high speed engines is quite complex, requiring a suitable support from CFD simulation.
Journal Article

CFD Analysis of Combustion and Knock in an Optically Accessible GDI Engine

2016-04-05
2016-01-0601
The occurrence of knock is the most limiting hindrance for modern Spark-Ignition (SI) engines. In order to understand its origin and move the operating condition as close as possible to onset of this potentially harmful phenomenon, a joint experimental and numerical investigation is the most recommended approach. A preliminary experimental activity was carried out at IM-CNR on a 0.4 liter GDI unit, equipped with a flat transparent piston. The analysis of flame front morphology allowed to correlate high levels of flame front wrinkling and negative curvature to knock prone operating conditions, such as increased spark timings or high levels of exhaust back-pressure. In this study a detailed CFD analysis is carried out for the same engine and operating point as the experiments. The aim of this activity is to deeper investigate the reasons behind the main outcomes of the experimental campaign.
Technical Paper

CFD parametric analysis of the combustion chamber shape in a small HSDI Diesel engine

2005-10-12
2005-32-0094
The paper aims at providing information about the influence of the combustion chamber shape on the combustion process evolution in a high speed direct injection (HSDI) small unit displacement engine for off-highway applications. Small HSDI Diesel engines require a deep optimisation process in order to maximize specific power output, while limiting pollutant emissions without additional expensive pollutant aftertreatment equipments. Making reference to a current production engine, the purpose of this paper is to investigate the influence of combustion chamber design on both engine performances and combustion efficiency. The actual piston omega-shape is progressively distorted in order to assess the influence of some of the main bowl-features on both mean-flow evolution, mixture formation and pollutants.
Technical Paper

Combustion Optimization of a Marine DI Diesel Engine

2013-09-08
2013-24-0020
Enhanced calibration strategies and innovative engine combustion technologies are required to meet the new limits on exhaust gas emissions enforced in the field of marine propulsion and on-board energy production. The goal of the paper is to optimize the control parameters of a 4.2 dm3 unit displacement marine DI Diesel engine, in order to enhance the efficiency of the combustion system and reduce engine out emissions. The investigation is carried out by means of experimental tests and CFD simulations. For a better control of the testing conditions, the experimental activity is performed on a single cylinder prototype, while the engine test bench is specifically designed to simulate different levels of boosting. The numerical investigations are carried out using a set of different CFD tools: GT-Power for the engine cycle analysis, STAR-CD for the study of the in-cylinder flow, and a customized version of the KIVA-3V code for combustion.
Technical Paper

Combustion Process Investigation in a DISI Engine Fuelled with n-butanol Through Digital Imaging and Chemiluminescence

2015-09-01
2015-01-1887
Direct-injection spark-ignition (DISI) engines have been adopted increasingly by the automotive industry in recent years due to their performance, reduced impact on the environment, and customer demand for advanced technology. However, detailed combustion processes in such engines are still not thoroughly analysed and understood. This work reports on the effects of different control parameters on the combustion process, such as fuel type, ignition timing and exhaust gas recirculation. Pure n-butanol and gasoline were used. All experiments were performed at 2000 rpm and 100 bar injection pressure in a transparent single-cylinder DISI engine equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio). Crank angle resolved 2D chemiluminescence in the UV range for OH radical and CO2 detection was performed with an ICCD camera and a high-speed CMOS camera was used for cycle resolved imaging.
Technical Paper

Commercial Vehicles: New Diesel Engine Concepts for Euro VI and Beyond

2017-01-10
2017-26-0034
The paper presents a numerical investigation, aimed to explore the potential of 2-stroke Diesel engines, able to meet Euro VI requirements, for application to medium size commercial vehicles (power rate: 80 kW at 2600 rpm, max. torque 420 Nm from 1200 to 1400 rpm). The study is based on experimental performance of a highly developed 4-stroke engine. Two different designs are considered: Loop and Uniflow scavenging, the latter obtained through an opposed piston configuration. In both cases, no poppet valves are used, and the lubrication is provided by a 4-stroke-like oil sump. The study started with the development of a 4-stroke EURO VI engine, on the basis of a previous EURO IV version. A prototype of the new engine (named 430) was built and tested.
Technical Paper

Comparison Between Two Combustion Chambers for a Motorcycle Racing Engine

2000-06-19
2000-01-1894
An experimental and computational analysis has been performed on the combustion chamber of a two cylinder, four stroke, four valve, spark ignition engine developed by Ducati Motor SpA for the Super Sport Championship. Two cylinder head configurations have been analyzed by using a three dimensional CFD code. Port and valve assemblies do not change. Only the combustion chamber surface changes in order to improve the intake flow. Head flow performances in terms of permeability have been determined by computing the steady discharge coefficients at different valve lifts. These values have also been measured on a steady flow test bench. Head flow performances in terms of flow conditioning, i.e. the attitude to promote tumbling and enhance combustion, have been determined by computing the equivalent solid body tumbling number of the flow field at intake bottom dead center.
Technical Paper

Comparison among different 2-Stage Supercharging systems for HSDI Diesel engines

2009-09-13
2009-24-0072
2-stage supercharging applied to HSDI Diesel engines appears a promising solution for enhancing rated power, low end torque, transient response and hence the launch characteristics of a vehicle. However, many open points still remain, in particular about the impact on emissions control and fuel economy at partial load conditions, generally requiring both high airflow and high EGR rates. The paper analyzes and compares two types of 2-stage supercharging systems: a) two turbochargers of different size; b) one turbocharger coupled to a positive displacement compressor. The goal of the paper is to assess pro and cons of the most feasible configurations for a typical automobile Diesel engine, complying with Euro V regulations and beyond. The base engine is the 2.8L, 4 cylinder in-line unit produced by VM Motori (Cento, Italy), equipped by a standard variable geometry turbocharger.
Journal Article

Comparison between 2 and 4-Stroke Engines for a 30 kW Range Extender

2014-11-11
2014-32-0114
The paper compares two different design concepts for a range extender engine rated at 30 kW at 4500 rpm. The first project is a conventional 4-Stroke SI engine, 2-cylinder, 2-valve, equipped with port fuel injection. The second is a new type of 2-Stroke loop scavenged SI engine, featuring a direct gasoline injection and a patented rotary valve for enhancing the induction and scavenging processes. Both power units have been virtually designed with the help of CFD simulation. Moreover, for the 2-Stroke engine, a prototype has been also built and tested at the dynamometer bench, allowing the authors to make a reliable theoretical comparison with the well assessed 4-Stroke unit.
Technical Paper

Comparison between a Diesel and a New 2-Stroke GDI Engine on a Series Hybrid Passenger Car

2013-09-08
2013-24-0085
The internal combustion engine (ICE) for a series hybrid vehicle must be very compact, fuel efficient reliable and clean; furthermore it should possess excellent NVH features; finally, the cost should be as low as possible. An unconventional but not exotic solution, potentially ideal to fulfill all the above mentioned requirements, is represented by a 2-Stroke externally scavenged GDI engine, without poppet valves. BRC (Cherasco, Italy) and PRIMAVIS (Turin, Italy) are currently developing an engine of this type, incorporating a patented rotary valve for the control of the charge induced to cylinder. The development is supported by extensive CFD simulations, which are able to predict all the main engine performance characteristics. The paper analyzes, from a theoretical point of view, the installation of the engine on an electric vehicle, previously optimized for a small Diesel engine (Smart 0.8 l CDi).
Technical Paper

Comparison of Supercharging Concepts for SI Engine Downsizing

2016-04-05
2016-01-1032
The paper reviews the design of the supercharging system for a strongly downsized engine, to be installed on a sport car. Design is supported by cfd-1d engine simulations, using an experimentally calibrated model. The goal of the supercharging system is to deliver the required values of boost pressure at steady operating conditions, and to maintain or improve the full size engine response during acceleration (one of the most critical issues for downsized engines). Two options have been considered: 1) two-stage turbocharging, with two small turbochargers as a high-pressure stage, and one big turbo as low pressure stage (referred to as “TRITURBO”; 2) two-stage supercharging made up of one low pressure stage turbocharger and one electric supercharger (referred to as “E-SUPER”).
X