Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Coupled Methodology for Modeling the Transient Thermal Response of SI Engines Subject to Time-Varying Operating Conditions

1997-05-19
971859
A comprehensive methodology for predicting the transient thermal response of spark-ignition engines subject to time-varying boundary conditions is presented. The approach is based on coupling a cycle-resolved quasi-dimensional simulation of in-cylinder thermodynamic events with a resistor-capacitor (R-C) thermal network of the various component and fluid interactions throughout the engine and exhaust system. The dynamic time step of the thermal solution is limited by either the frequency of the prescribed time-dependent boundary conditions or by the minimum thermal time constant of the R-C network. To demonstrate the need for fully-coupled, transient thermodynamic and heat transfer solutions, model behavior is first explored for step-change and staircase variations of engine operating conditions.
Technical Paper

A Hydrocarbon Autoignition Model for Knocking Combustion in SI Engines

1997-05-01
971672
The comprehensive engine simulation code, WAVE, is extended to include a knock sub-model. A hydrocarbon autoignition model based on a degenerate chain-branching mechanism that constitutes the basic kinetic framework was modified and coupled with WAVE's engine thermodynamic environment for this purpose. Making use of this modified hydrocarbon autoignition model and the flow based in-cylinder heat transfer model in WAVE, the original rapid compression machine (RCM) experiments of Shell can be reproduced reasonably well. In addition, a spatially and temporally resolved end-gas thermodynamic model was developed to allow a more accurate calculation of the end-gas temperature over the combustion chamber wall. The developed end-gas thermodynamic-driven knock model further assumes the existence of a pseudo-boundary-layer temperature profile which is linearly distributed between the unburned end-gas and the wall.
Technical Paper

A Methodology for Cycle-By-Cycle Transient Heat Release Analysis in a Turbocharged Direct Injection Diesel Engine

2000-03-06
2000-01-1185
This study presents a systematic methodology for performing transient heat release analysis in a diesel engine. Novel techniques have been developed to infer the mass of air trapped in the cylinder and the mass of fuel injected on a cycle-by-cycle basis. The cyclic mass of air trapped in the cylinder is found accounting for pressure gradients, piston motion and short-circuiting during the valve overlap period. The cyclic mass of fuel injected is computed from the injection pressure history. These parameters are used in conjunction with cycle-resolved pressure data to accurately define the instantaneous thermodynamic state of the mixture. This information is used in the calculation and interpretation of transient heat release profiles.
Technical Paper

A Prototype Thin-Film Thermocouple for Transient Heat Transfer Measurements in Ceramic-Coated Combustion Chambers

1990-02-01
900691
A prototype chromel-alumel overlapping thin-film thermocouple (TFTC) has been developed for transient heat transfer measurements in ceramic-coated combustion chambers. The TFTC has been evaluated using various metallurgical techniques such as scanning electron microscopy, energy dispersive x-ray detection, and Auger electron spectroscopy. The sensor was calibrated against a standard thermocouple in ice, boiling water, and a furnace at 1000°C. The microstructural and chemical analysis of the thin-films showed the alumel film composition was very similar to the bulk material, while the chromel film varied slightly. An initial set of ceramic plug surface temperatures was taken while motoring and firing the engine at 1900 rpm to verify thermocouple operation. The data shows a 613 K mean temperature and a 55 K swing for the ceramic surface compared with a 493 K mean temperature and a 20 K swing for the metal surface at the same location.
Technical Paper

A Telemetry Linkage System for Piston Temperature Measurements in a Diesel Engine

1991-02-01
910299
A telemetry linkage system has been developed for piston temperature measurements in a direct-injection diesel engine. In parallel with the development of the telemetry linkage system, fast response thermocouples were installed at three piston locations - two on the bowl surface and one on the crown surface. A novel design was used to achieve electrical continuity between the piston and the connecting rod by means of a flexible steel strap pivoted on the piston skirt. The telemetry linkage system was then used to transport the electrical wires from the thermocouples to the external data acquisition system. A series of tests was run to determine the effects of location and load on piston surface temperatures. Surface temperature profiles varied substantially among the three locations, reflecting the differences in the combustion and heat flow characteristics of their surrounding regions.
Technical Paper

A Test Method for Evaluating Material Combinations of Automotive Camshaft and Follower Components Subjected to Lubricated Sliding Simulating Variable Valve Actuation

2007-07-23
2007-01-1970
Cam phasing and Variable Valve Actuation (VVA) are used increasingly to alter the opening and closing of the valves to improve fuel economy by most of the automotive engine manufacturers. In instances where the design constraints require use of rolling and sliding follower interfaces with camshaft lobes, several solutions are possible. However, finding an inexpensive solution is challenging. This paper briefly reviews some of the conventional wear test methods that have primarily been used for piston ring cylinder liner wear assessments. Later on a new test method developed using the modified Optimol SRV 4 wear tester is described. This test method was used to assess and rank material combinations for sliding wear assessment of various camshaft lobe and follower components.
Technical Paper

An Experimental and Computational Evaluation of Two Dual-Intake-Valve Combustion Chambers

1990-10-01
902140
Multi-dimensional computations were made of spark-ignited premixed-charge combustion in two engines having pent-roof-shaped combustion chambers and two intake valves per cylinder, one with a central spark plug and the other with dual lateral spark plugs. The basic specifications for the two engines were the same except for differences in the number of spark plugs and exhaust valves. The effects of swirl and equivalence ratio on combustion, wall heat transfer, and nitric oxide emission characteristics were examined using a global combustion model that accounts for laminar-kinetics and turbulent-mixing effects. The initial conditions on both mean-flow and turbulence parameters at intake valve closing (IVC) were estimated in order to simulate engine operation either with both intake valves active or with one valve deactivated. The predictions were compared with experimentally derived pressure-time, heat loss, and nitric oxide emission data.
Technical Paper

An Investigation of Tribological Characteristics of Energy-Conserving Engine Oils Using a Reciprocating Bench Test

2000-06-19
2000-01-1781
Engine design and tribology engineers are constantly challenged to develop advanced products with reduced weight, reduced friction, longer life, and higher engine operating temperatures. The resulting engine systems must also meet more demanding emissions and fuel economy targets. Advanced energy-conserving lubricants and surface coatings are concurrently evolving to meet the needs of new engine materials. Because of the enormous cost and time associated with engine testing, much interest is being focused on the development of representative and repeatable bench tests for evaluation of engine materials and lubricants. The authors have developed a bench test employing reciprocating motion for evaluating friction and energy-conserving characteristics of lubricants.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Assessment of Alternative Strategies for Reducing Hydrocarbon and Carbon Monoxide Emissions from Small Two-Stroke Engines

1996-02-01
960743
Five small two-stroke engine designs were tested at different air/fuel ratios, under steady state and transient cycles. The effects of combustion chamber design, carburetor design, lean burning, and fuel composition on performance, hydrocarbon and carbon monoxide emissions were studied. All tested engines had been designed to run richer than stoichiometric in order to obtain satisfactory cooling and higher power. While hydrocarbon and carbon monoxide emissions could be greatly reduced with lean burning, engine durability would be worsened. However, it was shown that the use of a catalytic converter with acceptably lean combustion was an effective method of reducing emissions. Replacing carburetion with in-cylinder fuel injection in one of the engines resulted in a significant reduction of hydrocarbon and carbon monoxide emissions.
Technical Paper

Assessment of Correlation Between Bench Wear Test Results and Engine Cylinder Wear, Short-Trip Service

2000-10-16
2000-01-2947
Bench tests are often less expensive and faster than vehicle tests. However, correlation between bench tests and the engine needs to be proven, otherwise bench tests may be misleading. This investigation explored the relationships between bench wear test results and engine results from short-trip driving tests for a variety of conditions: fresh vs. used oil, different methods for assessing wear, and chemical effects such as oil contamination and differences in the fuel. There was a negative correlation between bench tests with fresh oil compared to vehicle test results with used oil, which suggests that bench wear characteristics of fresh engine oil should not be used to determine engine wear rates under the conditions tested here. Statistical analysis of bench test wear rates with used engine oil, compared to engine wear measurements, indicated that the trends were in an appropriate direction, with some scatter in the results.
Technical Paper

Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition

2011-04-12
2011-01-1179
Homogeneous charge compression ignition (HCCI) has received much attention in recent years due to its ability to reduce both fuel consumption and NO emissions compared to normal spark-ignited (SI) combustion. However, due to the limited operating range of HCCI, production feasible engines will need to employ a combination of combustion strategies, such as stoichiometric SI combustion at high loads and leaner burn spark-assisted compression ignition (SACI) and HCCI at intermediate and low loads. The goal of this study was to extend the high load limit of HCCI into the SACI region while maintaining a stoichiometric equivalence ratio. Experiments were conducted on a single-cylinder research engine with fully flexible valve actuation. In-cylinder pressure rise rates and combustion stability were controlled using cooled external EGR, spark assist, and negative valve overlap. Several engine loads within the SACI regime were investigated.
Technical Paper

Calculation of Flow in the Piston-Cylinder-Ring Crevices of a Homogeneous-Charge Engine and Comparison with Experiment

1989-02-01
890838
A crevice-flow model that had been published in the literature was reconstructed and used to calculate flow in the crevices between the piston, the cylinder, and the rings in a homogeneous-charge engine. The code was then modified to run interactively with a more sophisticated ring-friction model developed previously for calculation of the film thickness of lubricating oil on the cylinder liner. The accuracy of this crevice-flow model was evaluated with engine-blowby data taken from tests on a multicylinder engine. The data covered wide ranges of speed (1300-3200 r/min) and load (260-780 kPa IMEP). It was concluded from this evaluation that the calculated magnitude of the blowby can differ from the measurement by more than 50% for the worst case. The measured trends, however, were correctly replicated with variations in both speed and IMEP, except at the highest speed of 3200 r/min.
Technical Paper

Characterizing the Effect of Combustion Chamber Deposits on a Gasoline HCCI Engine

2006-10-16
2006-01-3277
Homogenous Charge Compression Ignition (HCCI) engines offer a good potential for achieving high fuel efficiency while virtually eliminating NOx and soot emissions from the exhaust. However, realizing the full fuel economy potential at the vehicle level depends on the size of the HCCI operating range. The usable HCCI range is determined by the knock limit on the upper end and the misfire limit at the lower end. Previously proven high sensitivity of the HCCI process to thermal conditions leads to a hypothesis that combustion chamber deposits (CCD) could directly affect HCCI combustion, and that insight about this effect can be helpful in expanding the low-load limit. A combustion chamber conditioning process was carried out in a single-cylinder gasoline-fueled engine with exhaust re-breathing to study CCD formation rates and their effect on combustion. Burn rates accelerated significantly over the forty hours of running under typical HCCI operating conditions.
Technical Paper

Compression Ratio Influence on Maximum Load of a Natural Gas Fueled HCCI Engine

2002-03-04
2002-01-0111
This paper discusses the compression ratio influence on maximum load of a Natural Gas HCCI engine. A modified Volvo TD100 truck engine is controlled in a closed-loop fashion by enriching the Natural Gas mixture with Hydrogen. The first section of the paper illustrates and discusses the potential of using hydrogen enrichment of natural gas to control combustion timing. Cylinder pressure is used as the feedback and the 50 percent burn angle is the controlled parameter. Full-cycle simulation is compared to some of the experimental data and then used to enhance some of the experimental observations dealing with ignition timing, thermal boundary conditions, emissions and how they affect engine stability and performance. High load issues common to HCCI are discussed in light of the inherent performance and emissions tradeoff and the disappearance of feasible operating space at high engine loads.
Technical Paper

Computation of Premixed-Charge Combustion in Pancake and Pent-Roof Engines

1989-02-01
890670
Multidimensional computations were made of spark-ignited premixed-charge combustion in a pancake-combustion-chamber engine with a centrally located spark plug and in two pent-roof-chamber engines, one with a central spark plug and the other with dual lateral spark plugs. A global combustion submodel was used that accounts for laminar kinetics and turbulent mixing effects. The predictions were compared with available measurements in the pancake-chamber engine over a range of loads, speeds, and equivalence ratios. In all cases the computed and measured cylinder pressures agreed well in trends and magnitudes (within 8%) for the entire duration of combustion. Fair agreements were also obtained between predicted and measured values of wall heat flux and emission index of nitric oxide. In the pent-roof-chamber engines the predicted maximum cylinder pressures also agreed well with measurements (within 12%) in cases with MBT (Minimum spark advance for Best Torque) or advanced spark timing.
Technical Paper

Cylinder Pressure Reconstruction and its Application to Heat Transfer Analysis

2004-03-08
2004-01-0922
In this paper, a new method for cylinder pressure reconstruction is proposed based on the concept of a dimensionless pressure curve in the frequency domain. It is shown that cylinder pressure profiles, acquired over a wide range of engine speeds and loads, exhibit similarity. Hence, cylinder pressure traces collapse into a set of dimensionless curves within a narrow range after normalization in the frequency domain. The dimensionless pressure traces can be described by a curve-fit family, which can be used for reconstructing pressure diagrams back into the time domain at any desired condition. The accuracy associated with this method is analyzed and its application to engine heat transfer analysis is demonstrated.
Technical Paper

Design Optimization of the Piston Compounded Adiabatic Diesel Engine Through Computer Simulation

1993-03-01
930986
This paper describes the concept and a practical implementation of piston-compounding. First, a detailed computer simulation of the piston-compounded engine is used to shed light into the thermodynamic events associated with the operation of this engine, and to predict the performance and fuel economy of the entire system. Starting from a baseline design, the simulation is used to investigate changes in system performance as critical parameters are varied. The latter include auxiliary cylinder and interconnecting manifold volumes for a given main cylinder volume, auxiliary cylinder valve timings in relation to main cylinder timings, and degree of heat loss to the coolant. Optimum designs for either highest power density or highest thermal efficiency (54%) are thus recommended. It is concluded that a piston-compounded adiabatic engine concept is a promising future powerplant.
Technical Paper

Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies

1986-03-01
860329
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system has been developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multi-cylinder reciprocator diesel model where each cylinder undergoes the same thermodynamic cycle. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. This paper describes the basic system models and their calibration and validation against available experimental engine test data. The use of the model is illustrated by predicting the performance gains and the component design trade-offs associated with a partially insulated engine achieving a 40 percent reduction in heat loss over a baseline cooled engine.
Technical Paper

Development and Validation of a Comprehensive CFD Model of Diesel Spray Atomization Accounting for High Weber Numbers

2006-04-03
2006-01-1546
Modern diesel engines operate under injection pressures varying from 30 to 200 MPa and employ combinations of very early and conventional injection timings to achieve partially homogeneous mixtures. The variety of injection and cylinder pressures results in droplet atomization under a wide range of Weber numbers. The high injection velocities lead to fast jet disintegration and secondary droplet atomization under shear and catastrophic breakup mechanisms. The primary atomization of the liquid jet is modeled considering the effects of both infinitesimal wave growth on the jet surface and jet turbulence. Modeling of the secondary atomization is based on a combination of a drop fragmentation analysis and a boundary layer stripping mechanism of the resulting fragments for high Weber numbers. The drop fragmentation process is predicted from instability considerations on the surface of the liquid drop.
X