Refine Your Search

Search Results

Technical Paper

A Study of PM Emission Characteristics of Diesel Vehicle Fueled with GTL

2007-01-23
2007-01-0028
In this study, diesel exhaust emission characteristics were investigated as GTL (Gas To Liquid) fuel was applied to a heavy-duty diesel truck which had been developed to match a Japanese new long-term exhaust emission regulation (NOx < 2.0 g/kWh, PM < 0.027 g/kWh). The results in this study show that although the test vehicle has advanced technologies (e.g. high pressure fuel injection, oxidation catalyst, and urea-SCR aftertreatment system, etc.) which are applied to reduce diesel emissions, the neat GTL fuel has a great advantage to reduce particulate matter emissions and poly aromatic hydrocarbons. And regarding nano-size PM emissions, nuclei mode particles emitted during idling are significantly decreased by using the GTL fuel.
Technical Paper

CFD Study of an LPG DI SI Engine for Heavy Duty Vehicles

2002-05-06
2002-01-1648
This work aimed to develop an LPG fueled direct injection SI engine, especially in order to improve the exhaust emission quality while maintaining high thermal efficiency comparable to a conventional engine. In-cylinder direct injection engines developed recently worldwide utilizes the stratified charge formation technique at low load, whereas at high load, a close-to-homogeneous charge is formed. Thus, compared to a conventional port injection engine, a significant improvement of fuel consumption and power can be achieved. To implement such a combustion strategy, the stratification of mixture charge is very important, and an understanding of its combustion process is also inevitably necessary. In this work, a numerical simulation was performed using a CFD code (KIVA-3), where the shape of a combustion chamber, swirl intensity, injection timing and duration, etc. were varied and their effects on the mixture formation and combustion process were investigated.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Technical Paper

Development of Retrofit DME Diesel Engine Operating with Rotary Distributor Fuel Injection Pump

2003-03-03
2003-01-0758
In order to reduce environmental disruption due to exhaust PM and NOx emissions from diesel engines of dimethyl ether (DME) has been proposed the use for the next generation vehicles, because the discharge of the atmospheric pollutants is less. In this study, DME is used to fuel a retrofit type diesel engine, and operational tests were carried out using a rotary distributor fuel injection pump. In this experiment, comparison and examination of the effects of fuel injection pressure, nozzle hole diameter, and injection timing. When using DME as an alternative fuel, the fuel temperature affects engine operation. And diameter of the injector nozzle hole and larger injection quantity is regarded as factors affecting the improvement in engine performance. In addition, for understanding the DME spray in the cylinder, DME was sprayed in a constant volume chamber where atmospheric temperature and pressure increased simultaneously, and the result is compared and examined with diesel fuel.
Technical Paper

Dual Mode Combustion Concept With Premixed Diesel Combustion by Direct Injection Near Top Dead Center

2003-03-03
2003-01-0742
Premixed diesel combustion was performed and various characteristics examined with fuel injection timing near top dead center (TDC). A lean and uniform fuel-air mixture was found to during 25° C.A. with a narrow injection angle (27.5° with respect to horizontal), shallow dish combustion chamber, and low cetane number fuel (CN=19). These conditions enabled low NOx combustion in no exhaust gas re-circulation (EGR), despite fuel injection timing around 25° BTDC. Furthermore, HC emissions were lower than with premixed diesel combustion of the early injection type. Because fuel injection timing was near TDC, the volume of the mixture dispersed to a squish area was decreased. This combustion mode was also achieved with a high-cetane fuel (conventional diesel fuel) and high EGR rate conditions. However, in this case, it was difficult to adjust the ignition timing near top dead center. This combustion system also showed good performance in conventional diesel combustion mode.
Technical Paper

Dual-Fuel Diesel Engine Using Butane

1992-02-01
920690
The authors tried to use LP gas, mainly butane, as the main fuel of diesel engines to reduce soot and to maintain high thermal efficiency. LP gas was injected in the direction of the intake valve directly as a spray to prevent knocking and to preserve high charging efficiency. The newly developed electronic fuel injection provided accurate fuel control and injection timing. As a result, the dual-fuel operation produced high thermal efficiency almost identical to that of diesel engines. Soot in engine exhaust was almost negligible. Three quarters of maximum output was obtained with butane, and only small amount of gas oil for idling, in spite of an high compression ratio of 17 for gas engines. Increasing the proportion of gas oil resulted in maximum output from a diesel engine and almost no soot output.
Technical Paper

Effects of Fuel Injection Conditions on Driving Performance of a DME Diesel Vehicle

2003-10-27
2003-01-3193
Since dimethyl ether (DME) is a synthetic fuel, it is possible to make it from natural gas, coal and biomass. It is a low-emission, oxygenated fuel, which does not generate soot in the exhaust. Therefore, it has recently been identified as a possible replacement for diesel fuel. In Japan, the new short-term emissions regulations will be enforced beginning in 2003, and the long-term emissions regulations are scheduled to be enforced in 2005. In order to meet these more stringent emissions regulations, existing diesel engines would not be as widely used in the near future as they currently are. This will thus bring about a more widespread use of DME engines due to their low emissions potential. Moreover, when the modification of existing diesel engines into DME engines is available at a moderate cost, the wider use of DME engines can be expected. This study targeted development and application of DME engine technology for diesel engine retrofit, in a used diesel vehicle.
Technical Paper

Effects of Fuel Injection Rate on Combustion and Emission in a DI Diesel Engine

1998-08-11
981929
Fuel injection rate pattern represents an important factor for emissions reduction. In this study, fuel spray photography, combustion photography and experimental data analysis indicate. 1) effect of pilot injection 2) effect of a gradual shaped injection profile using nozzle needle lift control 3) effect of a boot shaped injection profile using pressure control Common rail type fuel injection equipment was used in these experiments, and the engine was single cylinder naturally aspirated D.I. diesel engine. As a result, we found out that it is important to control the pre-mixed combustion for NOx reduction and to activate the diffusion combustion for smoke, and various fuel injection rate patterns we studied have similar effect on combustion and emissions at the most suitable condition respectively.
Technical Paper

Effects of Initial In-Cylinder Flow Field on Mixture Formation in a Premixed Compression Ignition Engine

2000-03-06
2000-01-0331
To find more effective lean mixture preparation methods for smokeless and low NOx combustion, a numerical study of the effects of in-cylinder flow field before injection on mixture formation in a premixed compression ignition engine was conducted. Premixed compression ignition combustion is a very attractive method to reduce both NOx and soot emissions, but it still has some problems, such as high HC and CO emissions. In case of early direct injection, it is important to avoid wall wetting by spray impingement, which can cause higher HC and CO emissions. Since it is not easy to examine the effects of initial flow and injection parameters on mixture formation over the wide range by practical engine tests, a computer program named “GTT (Generalized Tank and Tube)” code was used to simulate the in-cylinder phenomena before autoignition.
Technical Paper

Effects of Injection Conditions on Mixture Formation Process in a Premixed Compression Ignition Engine

2000-06-19
2000-01-1831
The mixture formation process in a premixed compression ignition engine was numerically analyzed. This study aimed to find out effective injection conditions for lean mixture formation with high homogeneity, since the NOx and soot emissions in the engine are closely related to the mixture homogeneity. To calculate fuel spray behavior, a practical computer code GTT (Generalized Tank and Tube) was employed. In a model for the premixed compression ignition engine, the effects of injection parameters, such as injection timing, initial droplet size, spray angle, injection velocity, nozzle type (pintle and hole) and injection position / direction, on the mixture homogeneity near ignition timing (or TDC) were investigated. To evaluate the homogeneity of the mixture, an index was defined based on the spatial distribution of fuel mass fraction. The fuel vapor mass fractions as well as the homogeneity indices, obtained as a function of time, were compared under various boundary conditions.
Technical Paper

Expansion of Premixed Compression Ignition Combustion Region by Supercharging Operation and Lower Compression Ratio Piston

2007-08-05
2007-01-3614
Various premixed diesel combustion concepts are suggested as the way of simultaneous reduction of NOx and PM emission from diesel engines. However, every combustion concept has common problems, such as difficulty of ignition timing control, a great deal of HC and CO emissions and limiting the operation region to low load operation. The purpose of this study is to expand the operation region of Premixed Compression Ignition (PCI) combustion, which is a premixed diesel combustion concept that realizes the fuel injection around the top dead center. As a result of examining it with EGR, supercharging operation and low compression ratio piston, PCI combustion region was expanded to cover higher load operation. And the high load region was limited by not only stoichiometric air fuel ratio but also permissible maximum in-cylinder pressure.
Technical Paper

Flame Front Speed of a Decane Cloud under Microgravity Conditions

1998-10-19
982566
In this study, a piezo disk was used to generate a cloud of n-decane fuel drops, which were mixed with air, then carried into a combustion chamber and ignited by a platinum wire. Microgravity data obtained at the Japan Microgravity Center (JAMIC) were compared to normal gravity data, all at 1Atm pressure and 20+/-1°C initial temperature. Under normal gravity the lean limit was found to be 7.6x106/mm3 (Φ = 1.0), and from this point the flame front speed steadily increased from 20cm/s up to a maximum flame front speed of 210cm/s at a fuel drop density of about 14x106/mm3 (Φ = 1.85). Microgravity data showed a much richer lean limit - about 14.5x106/mm3 (Φ = 1.9), and the flame front speed did not gradually rise to a peak value. Instead, the measurements indicated a peak value of about 250cm/s, with a steep increase followed by a gradual decrease at richer fuel air ratios. A cellular flame structure appeared, and the cell size decreased as the mixture density increased.
Technical Paper

Flame Speed Measurements and Predictions of Propane, Butane and Autogas at High Pressures

1998-10-19
982448
Flame propagation at elevated pressures for propane, butane and autogas (20% propane and 80% butane by mass) were investigated. Flame arrival time was measured using ionization probes installed along the wall of a cylindrical combustion chamber. Flame radius was also measured using a laser schlieren technique. Results showed that the flame front speed decreased with increasing initial pressure, and the initial pressure effect on maximum flame front speed was correlated by the relationship Sf = 175·pi-0.15 (for Φ=1.0). Characteristics of flame front speed between propane, butane and autogas were very similar, whereas at fuel-rich conditions flame front speed of butane and autogas were higher than that of propane. A thermodynamic model to predict flame radius and speed as a function of time was derived and tested using measured pressure-time curves.
Technical Paper

Influence of Fuel Injector Nozzle Geometry on Internal and External Flow Characteristics

1997-02-24
970354
The effects of upstream conditions, such as nozzle and entrance shapes, on external flow characteristics continue to challenge fuel injection modeling efforts, particularly in the case of high-pressure diesel sprays. In this research, flow details were investigated both experimentally and numerically in a fuel injector nozzle orifice using an integrated approach. Calculations using the SIMPLE algorithm were first performed for the scaled-up experimental nozzles with various length to diameter ratios (L/d). Measurements of internal flow velocities for these nozzles were made by laser Doppler velocimetry in order to verify the computational results. Mean and fluctuating velocities and discharge coefficients were obtained at various Reynolds numbers. The mean turbulence intensity and turbulent kinetic energy for a sharp inlet nozzle were generally higher than for a round inlet nozzle, except for the near-wall region beginning at about one nozzle diameter from the entrance.
Technical Paper

Investigation of Fuel Impurities Effect on DME Powered Diesel Engine System

2010-04-12
2010-01-0468
DME as a fuel for compression ignition (diesel) engines has been actively studied for about ten years due to its characteristically low pollution and reputation as a “smokeless fuel”. During this time, the practical application is taking shape based on necessary tasks such as analysis of injection and combustion, engine performance, and development of experimental vehicles. At this moment, standardization of DME as a fuel was started under ISO in 2007. There are concerns regarding the impurities in DME regarding the mixing during production and distribution as well as their effect on additives for lubricity and odor. In this report, the effect of DME fuel impurities on performance of a DME powered diesel engine was investigated. The platform was a DME engine with common-rail fuel injection and was evaluated under partial load stable mode and Japanese transient mode (JE05) testing parameters.
Technical Paper

Investigation of Premixed Lean Diesel Combustion with Ultra High Pressure Injection

2005-04-11
2005-01-0914
Aggravation of combustion efficiency cause by increase of un-burnt fuel is the major problem in case of premixed compression ignition combustion with early timing injection. In this study, formation of lean air-fuel mixture by near TDC injection timing was investigated. As a natural consequence of this approach, permissible mixing time fall short. Therefore ultra high pressure injection system combined with micro hole nozzle was used in this work for increase of turbulent mixing rate. In this study, commercial Diesel fuel of Japan (JIS#2) was used as the test fuel. Cetane number of this fuel is 62. Some of previous research work shows that required injection timing for lean mixture formation to reduce NOx emission with high cetane number fuel was -90 deg.ATDC or more advanced point. On the other hand, injection timing of indicating extremely low NOx emission level is -38 deg.ATDC in our test result.
Technical Paper

Investigation of the Combustion Mechanism of a Fuel Droplet Cloud by Numerical Simulation

1998-10-19
982615
The combustion mechanism of a fuel droplet cloud was studied by numerical simulation. We investigated how the flame front speed and combustion products changed depending on the equivalence ratio and initial temperature. Modeling was performed using the KIVA-III software package, a three dimensional analysis software used mainly for internal combustion engine applications. The computational domain was a horizontal 1x1x100 cell sector of a spherical combustion chamber and the fuel was n-decane. Results showed that when all the fuel droplets were assumed to have evaporated, the flame front speed increased from 28 cm/s to 152 cm/s as the equivalence ratio increased. The maximum flame front speed was reached at ϕ=1.1, beyond which it decreased (at richer overall equivalence ratios). With a constant equivalence ratio, the flame front speed decreased near the outside region, because the unburned gas was compressed by the expanding burned gas.
Technical Paper

KIVA Simulation for Mixture Formation Processes in an In-Cylinder Injected LPG SI Engine

2000-10-16
2000-01-2805
This is a preliminary work for the development of a stratified combustion engine using liquefied petroleum gas(LPG) as an alternative fuel. The main objective of this research is to find out the optimizing engine parameters from the viewpoint of mixture formation with the aid of simulation, where the KIVA_ code was used. The combustion characteristics of LPG and gasoline are different because of their different physical properties. Therefore, the numerical simulation was performed for optimizing engine parameters by changing the piston and cylinder geometry, as well as injection conditions. Result showed that geometry of combustion chamber has a great influence on mixture stratification. Also, weaker swirl seems to be better for mixture formation in the vicinity of the spark plug.
Technical Paper

Methodology of Lubricity Evaluation for DME Fuel based on HFRR

2011-11-08
2011-32-0651
The methodology of lubricity evaluation for DME fuel was established by special modified HFRR (High-Frequency Reciprocating Rig) such as Multi-Pressure/Temperature HFRR (MPT-HFRR). The obtained results were summarized as follows: The HFRR method is adaptable with DME fuel. There is no effect of the test pressure (up to 1.8 MPa) and the test temperature (up to 100°C) of MPT-HFRR on wear scar diameter. The results with MPT-HFRR can be applied at the sliding parts of the injection needle and the fuel supply pump's plungers which are secured lubricity by the boundary lubrication mode mainly and the mixed lubrication mode partially. Using the fatty-acid-based lubricity improver in amounts of approximately 100 ppm, the lubricity of DME, which has a lack of self-lubricity, is ensured as same as the diesel fuel equivalent level. There is a big deviation of measured wear scar diameter when the LI concentration is not enough.
Technical Paper

Spectroscopic Investigation of the Combustion Process in DME Compression Ignition Engine

2002-05-06
2002-01-1707
For better understanding of the in-cylinder combustion characteristics of DME, combustion radicals of a direct injection DME-Fueled compression ignition engine were observed using a spectroscopic method. In this initial report, the emission intensity of OH, CH, CHO, C2 and NO radicals was measured using a photomultiplier. These radicals could be measured with wavelength resolution (half-width) as about 3.3 nm. OH and CHO radicals appeared first, and then CH radical emission was detected. After that, the combustion radicals were observed using a high-speed image intensified video camera with band-pass filter. All of radicals were able to observe as images with half-width as 6 or about 10 nm. Rich DME leaked from nozzle was burning at the end of combustion. Therefore, the second light emission of C2 radical after the main combustion was observed.
X