Refine Your Search

Search Results

Technical Paper

An Experimental Study of Injection and Combustion with Dimethyl Ether

2015-04-14
2015-01-0932
DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
Technical Paper

An Investigation on the Simultaneous Reduction of Particulate and NOx by Controlling Both the Turbulence and the Mixture Formation in DI Diesel Engines

1993-10-01
932797
This paper presents experimental results of the reduction of both particulate and NOx emitted from direct injection diesel engines by a two stage combustion process. The primary combustion is made very rich to reduce NOx and then the particulate is oxidized by strong turbulence generated during the secondary combustion. The rich mixture is formed by low pressure fuel injection and a small cavity combustion chamber configuration. The strong turbulence is generated by a jet of burned gas from an auxiliary chamber installed at the cylinder head. The results showed that NOx was reduced significantly while maintaining fuel consumption and particulate emissions. An investigation was also carried out on the particulate reduction process in the combustion chamber with the turbulence by gas sampling and in-cylinder observation with an optical fiber scope and a high speed camera.
Technical Paper

Analysis of NO Formation Characteristics and Control Concepts in Diesel Engines from NO Reaction-Kinetic Considerations

1995-02-01
950215
This paper uses NO Reaction Kinetic to determine NO formation characteristics in diesel engines. The NO formation was calculated by Extended Zel'dovich Reaction Kinetics in a diffusion process. The results show that the NO formation rate is independent of the mixing of the combustion gas, and that internal EGR (combustion gas mixing in a cylinder) has no effect on NO reduction. The paper also shows the potential of two stage combustion, and its effect strongly depends on the time-scale of mixing. Additionally the paper investigates the mechanism of increased NOx emissions in high pressure fuel injection.
Technical Paper

Atomization Characteristics for Various Ambient Pressure of Dimethyl Ether (DME)

2002-05-06
2002-01-1711
Recently, dimethyl ether (DME) has been attracting much attention as a clean alternative fuel, since the thermal efficiency of DME powered diesel engine is comparable to diesel fuel operation and soot free combustion can be achieved. In this experiment, the effect of ambient pressure on DME spray was investigated with observation of droplet size such as Sauter mean diameter (SMD) by the shadowgraph and image processing method. The higher ambient pressure obstructs the growth of DME spray, therefore faster breakup was occurred, and liquid column was thicker with increasing the ambient pressure. Then engine performances and exhaust emissions characteristics of DME diesel engine were investigated with various compression ratios. The minimum compression ratio for the easy start and stable operation was obtained at compression ratio of about 12.
Technical Paper

Catalytic Reduction of NOx in Actual Diesel Engine Exhaust

1992-02-01
920091
Copper ion-exchanged ZSM-5 zeolite catalyst, which reduces nitrogen oxides (NOx) in the presence of oxygen and hydrocarbons, was applied to actual diesel engine exhaust. Copper ion-exchanged ZSM-5 zeolite effectively reduced NOx by 25% in normal engine operation, and by 80% when hydrocarbons in the exhaust were increased. Water in the exhaust gas decreased the NOx reduction efficiency, but oxygen and sulfur appeared to have only a small effect. Maximum NOx reduction was observed at 400°C irrespective of hydrocarbon species, and did not decrease with space velocity up to values of 20,000 1/h. THE PURPOSE of this paper is to evaluate the possibilities and problems in catalytic reduction of NOx in actual diesel engine exhaust. Here, a copper ion-exchanged ZSM-5 zeolite (Cu-Z) catalyst was applied to diesel engine exhaust to examine the dependency of the NOx reduction efficiency on temperature and space velocity. The effects of oxygen, water and hydrocarbons were also examined.
Technical Paper

Chemiluminescence Analysis from In-Cylinder Combustion of a DME-Fueled DI Diesel Engine

2003-10-27
2003-01-3192
To date, the DME combustion mechanism has been investigated by in-cylinder gas sampling, numerical calculations and observation of combustion radicals. It has been possible to quantify the emission intensities of in-cylinder combustion using a monochromator, and to observe the emitting species as images by using band-pass filters. However, the complete band images were not observed since the broadband (thermal) intensity may be stronger than band spectra intensities. Emission intensities of DME combustion radicals from a pre-mixed burner flame have been measured using a spectroscope and photomultiplier. Results were compared to other fuels, such as n-butane and methane, then, in this study, to better understand the combustion characteristics of DME, emission intensities near CH bands of an actual DI diesel engine fueled with DME were measured, and band spectra emitted from the engine were defined. Near TDC, emission intensities did not vary with wavelength.
Journal Article

Comparison of fuel economy and exhaust emission tests of 4WD vehicles using single-axis chassis dynamometer and dual-axis chassis dynamometer

2011-08-30
2011-01-2058
The demands of application of dual-axis chassis dynamometers (4WD-CHDY) have increased recently due to the improvement of performance of 4WD-CHDY and an increase in the number of 4WD vehicles which are difficult to convert to 2WD. However, there are few evaluations of any differences between fuel economy and exhaust emission levels in the case of 2WD-CHDY with conversion from 4WD to 2WD (2WD-mode) and 4WD-CHDY without conversion to 2WD (4WD-mode). Fuel economy and exhaust emission tests of 4WD vehicle equipped with a typical 4WD mechanism were performed to investigate any differences between the case of the 2WD-mode and the 4WD-mode. In these tests, we measured ‘work at wheel’ (wheel-work) using wheel torque meters. A comparison of the 2WD-mode and the 4WD-mode reveals a difference of fuel economy (2WD-mode is 1.5% better than that of 4WD-mode) and wheel-work (2WD-mode is 3.9% less than that of 4WD-mode). However, there are almost no differences of exhaust emission levels.
Technical Paper

Computational and Experimental Study on the Influence of Formaldehyde on HCCI Combustion Fueled with Dimethyl Ether

2003-05-19
2003-01-1826
Computational analysis on the mechanism and control method for DME fueled HCCI type combustion was carried out on the basis of the chemical kinetics. The calculation results were verified experimentally using a single cylinder test engine. Analysis of the results showed that DME oxidation is governed by production/consumption behavior of OH, because DME oxidation is initiated by dehydrogenation with OH radicals. It was also shown that the overall oxidation reaction could be controlled by adding substances which react competitively with OH in the dehydrogenation reactions of DME. Of the substances we tested, formaldehyde was most effective. It was confirmed by engine testing that by adding a small amount of formaldehyde to the DME/air mixture, the heat evolved in the low temperature reactions was reduced and the reaction appearance timing was retarded.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
Technical Paper

Effect of exhaust gas composition on EGR deposit formation

2019-12-19
2019-01-2358
Serious problems occur in an exhaust gas recirculation system due to an adhesive hard deposit. It is important to clarify the mechanism of the hard deposit formation to suppress it. In this study, the effect of exhaust gas composition on hard deposit formation was investigated. The amount of the hard deposit formed under various operating conditions while keeping the total hydrocarbon concentration constant was different. The component analyses of the exhaust gas and the hard deposit clarified that polycyclic aromatic hydrocarbon in the exhaust gas strongly affected the hard deposit formation.
Journal Article

Evaluation of Mechanism for EGR Deposit Formation Based on Spatially- and Time-Resolved Scanning-Electron-Microscope Observation

2020-09-15
2020-01-2027
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide emissions. To meet the strict emission regulations, e.g., Real Driving Emissions, the EGR system is required to be used at temperatures lower than the present ones. However, under cool conditions, an adhesive deposit forms on the EGR valve or cooler because of the particulate matter and other components present in the diesel exhaust. This causes sticking of the EGR valve or degradation of the heat-exchange performance, which are serious problems. In this study, the EGR deposit formation mechanism was investigated based on spatially- and time-resolved scanning electron microscopy (SEM) observation. The deposit was formed in a custom-made sample line using real exhaust emitted from a diesel engine. The exhaust including soot was introduced into the sample line for 24 h (maximum duration), and the formed deposit was observed using SEM.
Technical Paper

Experimental Study of CI Natural-Gas/DME Homogeneous Charge Engine

2000-03-06
2000-01-0329
In this study, a homogeneous mixture of natural-gas and air was used in a compression ignition engine to reduce NOx emissions and improve thermal efficiency. In order to control ignition timing and combustion, a small amount of DME was mixed with the natural-gas. Engine performance and the exhaust characteristics were investigated experimentally. Results show the following: the engine can run over quite a large load range if a certain amount of DME is added into natural-gas. By optimizing the proportion of DME to natural-gas, NOx emissions can be lowered to near zero levels if the mixture is lean enough. Thermal efficiency is higher than that obtained with normal diesel fuel operation.
Technical Paper

Experimental and Modeling Study of NH3-SCR on a Hydrocarbon-Poisoned Cu-CHA Catalyst

2023-10-31
2023-01-1659
A urea-selective catalytic reduction (SCR) system is used for the reduction of NOx emitted from diesel engines. Although this SCR catalyst can reduce NOx over a wide temperature range, improvements in NOx conversion at relatively low temperatures, such as under cold-start or low-load engine conditions, are necessary. A close-coupled SCR (cc-SCR), which was set just after the engine exhaust manifold, was developed to address this issue. The temperature of the SCR catalyst increases rapidly owing to the higher exhaust temperatures, and NOx conversion is then enhanced under cold-start conditions. However, since the diesel oxidation catalyst is not installed before the SCR catalyst, hydrocarbon (HC) emissions pass directly through the SCR catalyst and poison it, leading to lower NOx conversion. Therefore, the mechanism of NOx conversion reduction on HC-poisoned SCR catalysts are required to be studied.
Technical Paper

Experimental and Numerical Analysis of High Pressure DME Spray

2010-04-12
2010-01-0880
DME has lower energy content per unit volume than that of light oil (typical petroleum based diesel fuel). Roughly 1.8 times the quantity of DME is required to obtain equivalent content of light oil. DME also exhibits higher compressibility and much lower viscosity than light oil, so high pressure injection is not easy. Currently, DME engines have utilized a larger injection volume by enlarging the nozzle diameter with a relatively low injection pressure up to 60MPa. In order to obtain higher performance in future DME engines, high pressure fuel injection is considered essential, however the high pressure DME spray characteristics have not yet been understood. In this research, DME spray characteristics of high injection pressure up to 140MPa were examined using a constant volume vessel under engine-like temperature/pressure conditions.
Technical Paper

Fuel Properties and Engine Performance of Dimethyl Ether-Blended Biodiesel Fuels

2007-07-23
2007-01-2016
One way to reduce CO2 in the atmosphere is to use biodiesel fuel (BDF) [1]. BDF has the advantage of low smoke combustion, since its molecules contain oxygen. Meanwhile, BDF has the drawbacks of high viscosity and a high pour point that make it difficult to use at low temperatures. Dimethyl ether (DME) can be made from biomass, as well as from natural gas or coal; therefore, it is regarded as one of the biomass fuels. DME has low viscosity and a low boiling point, and smoke-free combustion can be obtained, since it has no carbon-carbon bond [2]. On the other hand, it has the disadvantage of low lubricity due to its low viscosity. When these fuels are blended together, the weaknesses of the fuels can be overcome. The objective of this research is to show that blending these two fuels is an effective way of bringing biomass-derived fuels into practical use.
Journal Article

High-Speed Observation and Modeling of Dimethyl Ether Spray Combustion at Engine-Like Conditions

2015-09-01
2015-01-1927
Dimethyl Ether (DME) is one of the major candidates for the alternative fuel for compression ignition (CI) engines. However, DME spray combustion characteristics are not well understood. There is no spray model validated against spray experiments at high-temperature and high-pressure relevant to combustion chambers of engines. DME has a lower viscosity and lower volumetric modulus of elasticity. It is difficult to increase injection pressure. The injection pressure remains low at 60 MPa even in the latest DME engine. To improve engine performance and reduce emissions from DME engines, establishing the DME spray model applicable to numerical engine simulation is required. In this study, high-speed observation of DME sprays at injection pressures up to 120 MPa with a latest common rail DME injection system was conducted in a constant volume combustion vessel, under ambient temperature and pressure of 6 MPa-920 K.
Journal Article

Ignition Characteristics of 2,5-Dimethylfuran Compared with Gasoline and Ethanol

2015-09-01
2015-01-1806
2,5-dimethylfuran (DMF) and 2-methylfuran (MF) have attracted attention as new biofuels. To utilize furans as alternative fuels, fundamental studies on the combustion characteristics are required. In this study, the ignition delay times of DMF were measured using a rapid compression machine and compared with those of gasoline and ethanol. To investigate the effect of the addition of DMF to gasoline, the ignition delay times of DMF-gasoline surrogate fuel blends were also measured. The ignition delay times of DMF were longer than those of gasoline and shorter than those of ethanol. The simulation results using the DMF kinetic model were in reasonable agreement with those of the experiments.
Technical Paper

Ignition Mechanisms of HCCI Combustion Process Fueled With Methane/DME Composite Fuel

2005-04-11
2005-01-0182
Homogeneous charge compression ignition (HCCI) combustion of methane was performed using dimethyl ether (DME) as an ignition improver. The ignition mechanisms of the methane/DME/air HCCI process were investigated on the basis of the chemical kinetics. The engine test was also conducted to verify the calculation results, and to determine the operation range. Analysis of the results showed that DME was an excellent ignition improver for methane, having two functions of temperature rise and OH radical supply. It was also shown that the operation range was extended to an overall equivalence ratio of 0.54 without knocking, by controlling DME quantity.
Technical Paper

Influence of Spectral Line Broadening on Measurements of NH3 Concentration in Automobile Exhaust Using Near-IR Laser Absorption Spectroscopy

2014-10-13
2014-01-2833
Recently, highly sensitive near-IR laser absorption spectrometers have been employed to measure ammonia (NH3) emissions. These instruments allow in-situ measurements of highly time-resolved NH3 emission levels in automobile exhaust. However, the effect of the automobile exhaust CO2 in NH3 measurements has not been studied in detail. Because the CO2 concentration in automobile exhaust is 2 to 3 orders of magnitude higher than the NH3 concentration, there is a possibility that spectral overlap by CO2 lines and/or the spectral broadening of NH3 by CO2 could affect the measured NH3 levels. This study had two major objectives. First, the effect of CO2 on the measured NH3 concentration was assessed using our developed near-IR laser absorption spectrometer. The second objective was to provide on-board NH3 measurements in the hybrid gasoline automobile exhaust using the developed spectrometer. As a result, the CO2 in automobile exhaust was found to affect the measured NH3 concentration.
Journal Article

Investigation of Mechanism for Formation of EGR Deposit by in situ ATR-FTIR Spectrometer and SEM

2016-10-17
2016-01-2351
Exhaust gas recirculation (EGR) is widely used in diesel engines to reduce nitrogen oxide (NOx) emissions. However, a lacquer is formed on the EGR valve or EGR cooler due to particulate matter and other components present in diesel exhaust, causing serious problems. In this study, the mechanism of lacquer deposition is investigated using attenuated total reflection Fourier transform infrared spectrometry (ATR-FTIR) and scanning electron microscopy (SEM). Deposition of temperature-dependent lacquers was evaluated by varying the temperature of a diamond prism between 80 and 120 °C in an ATR-FTIR spectrometer integrated into a custom-built sample line, which branched off from the exhaust pipe of a diesel engine. Lacquers were deposited on the diamond prism at 100 °C or less, while no lacquer was deposited at 120 °C. Time-dependent ATR-FTIR spectra were obtained for approximately 2 h from the beginning of the experiment.
X