Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Methanol, Methane and Hydrogen Fuels for SI Engines: Performance and Pollutant Emissions

2023-08-28
2023-24-0037
The urban mobility electrification has been proposed as the main solution to the vehicle emission issues in the next years. However, internal combustion engines have still great potential to decarbonize the transport sector through the use of low/zero-carbon fuels. Alcohols such us methanol, have long been considered attractive alternative fuels for spark ignition engines. They have properties similar to those of gasoline, are easy to transport and store. Recently, great attention has been devoted to gaseous fuels that can be used in existing engine after minor modification allowing to drastically reduce the pollutant emissions. In this regard, this study tries to provide an overview on the use of alternative fuels, both liquid and gaseous in spark ignition engines, highlighting the benefits as well as the criticalities. The investigation was carried out on a small displacement spark ignition engine capable to operate both in port fuel and direct injection mode.
Technical Paper

A “Dynamic System” Approach for the Experimental Characterization of a Multi-Hole Spray

2017-09-04
2017-24-0106
The analysis of a spray behavior is confined to study the fluid dynamic parameters such as axial and radial velocity of the droplets, size distribution of the droplets, and geometrical aspect as the penetration length. In this paper, the spray is considered like a dynamic system and consequently it can be described by a number of parameters that characterize its dynamic behavior. The parameter chosen to describe the dynamic behavior is the external cone angle. This parameter has been detected by using an experimental injection chamber, a multi-hole (8 holes) injector for GDI applications and recorded by a high-speed C-Mos camera. The images have been elaborated by a fuzzy logic and neural network algorithm and are processed by using a chaos deterministic theory. This procedure carries out a map distribution of the working point of the spray and determines the stable (signature of the spray) and instable behavior.
Technical Paper

An Experimental and Numerical Investigation of GDI Spray Impact over Walls at Different Temperatures

2016-04-05
2016-01-0853
Internal combustion engines performance greatly depends on the air-fuel mixture formation and combustion processes. In gasoline direct injection (GDI) engines, in particular, the impact of the liquid spray on the piston or cylinder walls is a key factor, especially if mixture formation occurs under the so-called wall-guided mode. Impact causes droplets rebound and/or deposition of a liquid film (wallfilm). After being rebounded, droplets undergo what is called secondary atomization. The wallfilm may remain of no negligible size, so that fuel vapor rich zones form around it leading to so-called pool-flames (flames placed in the piston pit), hence to unburned hydrocarbons (HC) and particulate matter (PM) formation. A basic study of the spray-wall interaction is here performed by directing a multi-hole GDI spray against a real shape engine piston, possibly heated, under standard air conditions.
Technical Paper

Analysis of the Effect of the Sampling Conditions on the sub-23 nm Particles Emitted by a Small Displacement PFI and DI SI Engines Fueled with Gasoline, Ethanol and a Blend

2019-09-09
2019-24-0155
The growing concerns on the emission of particles smaller than 23 nm, which are harmful to human health, lead to the necessity of introducing a regulation for these particles not yet included in the current emission standards. Considering that measurements of concentration of sub-23 nm particles are particularly sensitive to the sampling conditions, it is important to identify an effective assessment procedure. Aim of this paper is the characterization of the effect of the sampling conditions on sub-23 nm particles, emitted by PFI (port fuel injection) and DI (direct injection) spark ignition engines fueled with gasoline, ethanol and a mixture of ethanol and gasoline (E30). The experimental activity was carried out on a 250 cm3 displacement four stroke GDI and PFI single cylinder engines. The tests were conducted at 2000 rpm and 4000 rpm full load, representative of the homologation urban driving cycle.
Technical Paper

CFD Modeling and Validation of the ECN Spray G Experiment under a Wide Range of Operating Conditions

2019-09-09
2019-24-0130
The increasing diffusion of gasoline direct injection (GDI) engines requires a more detailed and reliable description of the phenomena occurring during the fuel injection process. As well known the thermal and fluid-dynamic conditions present in the combustion chamber greatly influence the air-fuel mixture process deriving from GDI injectors. GDI fuel sprays typically evolve in wide range of ambient pressure and temperatures depending on the engine load. In some particular injection conditions, when in-cylinder pressure is relatively low, flash evaporation might occur significantly affecting the fuel-air mixing process. In some other particular injection conditions spray impingement on the piston wall might occur, causing high unburned hydrocarbons and soot emissions, so currently representing one of the main drawbacks of GDI engines.
Technical Paper

CFD Numerical Reconstruction of the Flash Boiling Gasoline Spray Morphology

2020-09-27
2020-24-0010
The numerical reconstruction of the liquid jet generated by a multi-hole injector, operating in flash-boiling conditions, has been developed by means of a Eulerian- Lagrangian CFD code and validated thanks to experimental data collected with schlieren and Mie scattering imaging techniques. The model has been tested with different injection parameters in order to recreate various possible engine thermodynamic conditions. The work carried out is framed in the growing interest present around the gasoline direct-injection systems (GDI). Such technology has been recognized as an effective way to achieve better engine performance and reduced pollutant emissions. High-pressure injectors operating in flashing conditions are demonstrating many advantages in the applications for GDI engines providing a better fuel atomization, a better mixing with the air, a consequent more efficient combustion and, finally, reduced tailpipe emissions.
Technical Paper

Chaos Theory Approach as Advanced Technique for GDI Spray Analysis

2017-03-28
2017-01-0839
The paper reports an innovative method of analysis based on an advanced statistical techniques applied to images captured by a high-speed camera that allows highlighting phenomena and anomalies hardly detectable by conventional optical diagnostic techniques. The images, previously elaborated by neural network tools in order for clearly identifying the contours, have been analyzed in their time evolution as pseudo-chaotic variables that may have internal periodic components. In addition to the Fourier analysis, tools as Lyapunov and Hurst exponents and average Kω permitted to detect the chaos level of the signals. The use of this technique has permitted to distinguish periodic oscillations from chaotic variations and to detect those parameters that actually determine the spray behavior.
Technical Paper

Characterization of Ethanol Blends Combustion Processes and Soot Formation in a GDI Optical Engine

2013-04-08
2013-01-1316
This paper deals with the evaluation of the effect of fuel properties on soot formation in a GDI (gasoline direct injection) engine. Experimental investigation was carried out in an optical 4-stroke small single cylinder engine for two-wheel vehicles. The engine displacement was 250 cc. It was equipped with an elongated piston with a wide sapphire window in the head and a quartz cylinder liner. The engine was fuelled with pure gasoline and ethanol, and ethanol/gasoline blends at 20% v/v, 50% v/v and 85% v/v. Optical techniques based on 2D-digital imaging were used to follow the combustion process and soot formation. Spectroscopic measurements were carried out in order to assess the soot evolution. Radical species such as OH and CH, related to fuel quality and to soot formation/oxidation process, were detected. Measurements were carried out at various engine speeds and loads in order to allow optical measurements and to test the engine in real conditions.
Technical Paper

Characterization of Ethanol-Gasoline Blends Combustion processes and Particle Emissions in a GDI/PFI Small Engine

2014-04-01
2014-01-1382
The objective of this paper is the evaluation of the effect of the fuel properties and the comparison of a PFI and GDI injection system on the performances and on particle emission in a Spark Ignition engine. Experimental investigation was carried out in a small single cylinder engine for two wheel vehicles. The engine displacement was 250 cc. It was equipped with a prototype GDI head and also with an injector in the intake manifold. This makes it possible to run the engine both in GDI and PFI configurations. The engine was fuelled with neat gasoline and ethanol, and ethanol/gasoline blends at 10% v/v, 50% v/v and 85% v/v. The engine was equipped of a quartz pressure transducer that was flush-mounted in the region between intake and exhaust valves. Tests were carried out at 3000 rpm and 4000 rpm full load and two different lambda conditions. These engine points were chosen as representative of urban driving conditions.
Technical Paper

Design for an Optically Accessible Multicylinder High Performance GDI Engine

2011-09-11
2011-24-0046
In this paper, the modifications realized to make optically accessible a commercial high performance spark ignition and direct injection (DI) 4-cylinder engine are reported. The engine has been designed trying to keep as much as possible its thermo-fluid dynamic configuration in order to maintain its performance and emissions. Two optical accesses have been realized in order to interfere as little as possible with the combustion chamber geometry. A first optical access has been achieved in the piston head and a second by inserting an endoscopic fiber probe in the head. Preliminary results demonstrated that this optical assessment responds to the design targets and allowed a characterization of a commercial GDI engine working with homogeneous and stratified charge mode.
Technical Paper

ECN Spray G Injector: Assessment of Numerical Modeling Accuracy

2018-04-03
2018-01-0306
Gasoline Direct Injection (GDI) is a leading technology for Spark Ignition (SI) engines: control of the injection process is a key to design the engine properly. The aim of this paper is a numerical investigation of the gasoline injection and the resulting development of plumes from an 8-hole Spray G injector into a quiescent chamber. A LES approach has been used to represent with high accuracy the mixing process between the injected fuel and the surrounding mixture. A Lagrangian approach is employed to model the liquid spray. The fuel, considered as a surrogate of gasoline, is the iso-octane which is injected into the high-pressure vessel filled with nitrogen. The numerical results have been compared against experimental data realized in the optical chamber. To reveal the geometry of plumes two different imaging techniques have been used in a quasi-simultaneous mode: Mie-scattering for the liquid phase and schlieren for the gaseous one.
Technical Paper

Effect of Octane Number Obtained with Different Oxygenated Components on the Engine Performance and Emissions of a Small GDI Engine

2014-11-11
2014-32-0038
Great efforts have been paid to improve engine efficiency as well as to reduce the pollutant emissions. The direct injection allows to improve the engine efficiency; on the other hand, the GDI combustion produces larger particle emissions. The properties of fuels play an important role both on engine performance and pollutant emissions. In particular, great attention was paid to the octane number. Oxygenated compounds allow increasing gasoline's octane number and play an important role in PM emission reduction. In this study was analyzed the effect of fuels with different RON and with ethanol and ethers content. The analysis was performed on a small GDI engine. Two operating conditions, representative of the typical EUDC cycle, were investigated. Both the engine performance and the exhaust emissions were evaluated. The gaseous emissions and particle concentration were measured at the exhaust by means of conventional instruments.
Technical Paper

Effects of Ethanol and Gasoline Blending and Dual Fueling on Engine Performance and Emissions.

2015-09-06
2015-24-2490
Ethanol is the most promising alternative fuel for spark ignition (SI) engines, that is blended with gasoline, typically. Moreover, in the last years great attention is paid to the dual fueling, ethanol and gasoline are injected simultaneously. This paper aims to analyze the better methods, blending or dual fueling in order to best exploit the potential of ethanol in improving engine performance and reducing pollutant emissions. The experimental activity was carried out in a small displacement single cylinder engine, representative of 2-3 wheel vehicle engines or of 3-4 cylinder small displacement automotive engines. It was equipped with a prototype gasoline direct injection (GDI) head. The tests were carried out at 3000, 4000, and 5000 rpm full load. The investigated engine operating conditions are representative of the European homologation urban driving cycle.
Technical Paper

Effects of Prechamber on Efficiency Improvement and Emissions Reduction of a SI Engine Fuelled with Gasoline

2019-10-07
2019-24-0236
The permanent aim of the automotive industry is the further improvement of the engine efficiency and the simultaneous pollutant emissions reduction. The aim of the study was the optimization of the gasoline combustion by means of a passive prechamber. This analysis allowed the improvement of the engine efficiency in lean-burn operation condition too. The investigation was carried out in a commercial small Spark Ignition (SI) engine fueled with gasoline and equipped with a proper designed passive prechamber. It was analyzed the effects of the prechamber on engine performance, Indicated Mean Effective Pressure, Heat Release Rate and Fuel Consumption were used. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed. Emissions samples were taken from the exhaust flow, just downstream of the valves. Four different engine speeds were investigated, namely 2000, 3000, 4000 and 5000 rpm.
Technical Paper

Effects of Thermodynamic Conditions and Nozzle Geometry in Gaseous Fuels Direct Injection Process for Advanced Propulsion Systems

2022-03-29
2022-01-0505
Direct injection of gaseous fuels usually involves the presence of under-expanded jets. Understanding the physics of such process is imperative for developing Direct Injection (DI) internal combustion engines fueled, for example, by methane or hydrogen. An experimental-numerical characterization of the under-expanded jets issued from an innovative multi-hole injector, designed for application in heavy-duty engines, is carried out. The experimental characterization of the jet evolution was recorded by means of schlieren imaging technique and, then, a numerical simulation procedure was validated, allowing a comprehensive injection process analysis. A high-order and density-based solver, capable of reproducing the most relevant features of the under-expanded jets, was developed within OpenFOAM framework. Initially the effects of the upstream-to-downstream pressure ratio, namely Net Pressure Ratios (NPR), on the spray morphology were investigated.
Technical Paper

Effects of Ultra-High Injection Pressures up to 100 MPa on Gasoline Spray Morphology

2020-04-14
2020-01-0320
Very high pressures for injecting gasoline in internal combustion (i.c.) engines are recently explored for improving the air/fuel mixing process in order to control unburned hydrocarbons (UBHC) and particulate matter emissions such as for investigating new combustion concepts. The challenge remains the improvement of the spray parameters in terms of atomization, smaller droplets and their spread in the combustion chamber in order to enhance the combustion efficiency. In this framework, the raise of the injection pressure plays a key role in GDI engines for the trade-off of CO2 vs other pollutant emissions. This study aims contributing to the knowledge of the physical phenomena and mechanisms occurring when fuel is injected at ultra-high pressures for mapping and controlling the mixture formation.
Technical Paper

Experimental Analysis of O2 Addition on Engine Performance and Exhaust Emissions from a Small Displacement SI Engine

2016-04-05
2016-01-0697
In this paper, the effect of the oxygen addition on engine performance and exhaust emissions was investigated. The experimental study was carried out in a small single-cylinder PFI SI four-stroke engine. The addition of the 5% vol and 10% vol of oxygen was performed in the intake duct. Typical urban driving operating conditions were investigated. The engine emissions were characterized by means of gaseous analyzers and a smokemeter. Particle size distribution function was measured in the size range from 5.6 to 560 nm by means of an Engine Exhaust Particle Sizer (EEPS). An improvement in terms of engine power output, without BSFC penalty, and HC emissions with oxygen addition was observed at all the investigated operating conditions. On the other hand, NOx and PM emissions increase.
Journal Article

Experimental Characterization of High-Pressure Impinging Sprays for CFD Modeling of GDI Engines

2011-04-12
2011-01-0685
Today, Direct-Injection systems are widely used on Spark-Ignition engines in combination with turbo-charging to reduce the fuel-consumption and the knock risks. In particular, the spread of Gasoline Direct Injection (GDI) systems is mainly related to the use of new generations of multi-hole, high-pressure injectors whose characteristics are quite different with respect to the hollow-cone, low-pressure injectors adopted in the last decade. This paper presents the results of an experimental campaign conducted on the spray produced by a GDI six-holes injector into a constant volume vessel with optical access. The vessel was filled with air at atmospheric pressure. Different operating conditions were considered for an injection pressure ranging from 3 to 20 MPa. For each operating condition, spray images were acquired by a CCD camera and then post processed to evaluate the spray penetration and cone angles.
Technical Paper

Experimental Characterization of Methane Direct Injection from an Outward-Opening Poppet-Valve Injector

2019-09-09
2019-24-0135
The in-cylinder direct injection of natural gas can be a further step towards cleaner and more efficient internal combustion engines (ICE). However, the injector design and its characterization, both experimentally and by numerical simulation, is challenging because of the complex fluid dynamics related to gas compressibility and the small length scale. In this work, the under-expanded flow of methane from an outward-opening poppet-valve injector has been experimentally characterized by high-speed schlieren imaging. The investigation has been performed at ambient temperature and pressure and different nozzle pressure ratios (NPR) ranging from 10 to 18. The gaseous jet has been characterized in terms of its macroscale parameters. A scaling-law analysis of the results has been performed. The gas-dynamic structure at the nozzle exit has been also investigated.
Technical Paper

Experimental and Numerical Analysis of a Diesel Spray

1992-02-01
920576
A non-evaporating transient high pressure diesel spray operating under different ambient conditions was studied. Tip penetration and Sauter Mean Diameter (SMD) were measured using simultaneously the high speed photography and the laser light extinction techniques. Comparisons between experiments and computations were performed. The spray simulations were carried out by KIVA code version two with and without breakup submodel. The effect of the grid spacing on the numerical results was also evaluated. The KIVA simulations consistently underestimate the jet penetration. The computations of SMD are in disagreement with the experiments. These inaccuracies are probably caused by the inadeguate atomization model and, in part, by the limitation of the experimental techniques.
X