Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Biomechanical Face for the Hybrid III Dummy

1995-11-01
952715
Biomechanical data on the response of the face to localized and distributed loads are analyzed to provide performance goals for a biomechanically realistic face. Previously proposed facial injury assessment techniques and dummy modifications are reviewed with emphasis on their biomechanical realism. A modification to the Hybrid III dummy, called the GM Hybrid III Deformable Face, is described. The modification produces biomechanically realistic frontal impact response for both localized and distributed facial loads and provides for contact force determination using conventional Hybrid III instrumentation. The modification retains the anthropometric and inertial properties and the forehead impact response of the standard Hybrid III head.
Technical Paper

A Procedure for Normalizing Impact Response Data

1984-04-01
840884
For prescribed test conditions, a procedure is given for estimating the response characteristics of an arbitrary chosen standard subject based on the measured responses of subjects with different physical characteristics. Simple model analysis is used to develop the relationships between the subjects' responses and their physical characteristics. This analysis assures dimensional correctness among the critical parameters. The technique is applied to force-time data obtained by the Association Peugeot-Renault for lateral thoracic impacts of cadaver specimens. An averaged, normalized response curve is given for each of two impact conditions. A response corridor is prescribed for each average curve. These corridors can be used to assess the efficacy of various proposed thoracic side impact test devices exposed to similar impact conditions.
Technical Paper

A Shoulder Belt Load Cell for Racing Cars

2011-04-12
2011-01-1102
This paper presents the rationale behind the development of a shoulder belt load cell suitable for application in racings cars. The design of the load cell and the operational parameters necessary for a research-quality measurement device for biomechanics research in racing car crashes and the performance of the device in sled tests are described.
Technical Paper

Advanced Anthropomorphic Test Device Concept Definition

1985-01-01
856030
This paper summarizes the results of Phase 1, Concept Definition, of the AATD program and identifies the reasons such a new test device is needed. The following areas are addressed: 1) injury priority from accident data; 2) current dummy design, use, and potential improvements; and 3) technical characteristics and design concepts for a new AATD, its data processing, and its certification systems.
Technical Paper

Age Effects on Thoracic Injury Tolerance

1996-11-01
962421
It is well known that the ability of the human body to withstand trauma is a function of its inherent strength, i.e., the strength of the bones and soft tissues. Yet, the properties of the bones and tissues change as a function of the individual's age. In this paper age effects on thoracic injury tolerances are studied by analyzing the mechanical properties of human bones and soft tissues and by examining experimental results found in the literature of thoracic impact tests to human cadavers. This work suggests that the adult age range can be divided into three age groups. Using piece-wise linear regression analyses, it has been determined that the reduction in injury tolerance from the “young” age group to the “elderly” group is approximately 20% under blunt frontal impact loading conditions and is as much as 70% under belt loading conditions.
Technical Paper

Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections

2016-11-07
2016-22-0001
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
Technical Paper

Anatomy, Injury Frequency, Biomechanics, and Human Tolerances

1980-02-01
800098
The purpose of this literature review was to determine areas of automotive injury information that may add to knowledge of injury type, frequency, severity, and cause. This paper is a review of the literature concentrating on the period between 1965 and present. Literature on car, van, or 1ight truck occupants has been reviewed for injury frequencies, types, and locations. Current experimental biomechanical articles are also included. A search was made for descriptions of injury frequency, restraint effectiveness, and the causes of specific injuries. Medical and engineering journals, texts, and books were reviewed. For convenience, this report is divided into sections by body region with an overview introduction on the anatomy of the specific region.
Technical Paper

Assessment of Air Bag Deployment Loads with the Small Female Hybrid III Dummy

1993-11-01
933119
This study is an extension of previous work on driver air bag deployment loads which used the mid-size male Hybrid Ill dummy. Both small female and mid-size male Hybrid Ill dummies were tested with a range of near-positions relative to the air bag module. These alignments ranged from the head centered on the module to the chest centered on the module and with various separations and lateral shifts from the module. For both sized dummies the severity of the loading from the air bag depended on alignment and separation of the dummy with respect to the air bag module. No single alignment provided high responses for all body regions, indicating that one test at a typical alignment cannot simultaneously determine the potential for injury risk for the head, neck, and torso. Based on comparisons with their respective injury assessment reference values, the risk of chest injury appeared similar for both sized dummies.
Technical Paper

Biofidelity of the Hybrid III Head

1985-06-01
851245
An analysis was done of published forehead head impact data from cadaver specimens. Only data that were sufficiently documented to allow duplication of the impact environment were used in the analysis. A Hybrid III head, a Part 572 head, a Repeatable Pete head and two WSU heads were subjected to the same impact environments as the cadavers. A comparison of peak resultant head accelerations indicated that the Hybrid III response was the most representative of the cadaver data. The Part 572 head produced accelerations which were greater than the responses of the cadavers. These results support the claim that the Hybrid III head's response is humanlike for forehead impacts.
Technical Paper

Biomechanical Analysis of Indy Race Car Crashes

1998-11-02
983161
This paper describes the results of an ongoing project in the GM Motorsports Safety Technology Research Program to investigate Indianapolis-type (Indy car) race car crashes using an on-board impact recorder as the primary data collection tool. The paper discusses the development of specifications for the impact-recording device, the selection of the specific recorder and its implementation on a routine basis in Indy car racing. The results from incidents that produced significant data (crashes with peak decelerations above 20 G) during the racing seasons from 1993 through the first half of 1998 are summarized. The focus on Indy car crashes has proven to provide an almost laboratory-like setting due to the similarity of the cars and to the relative simplicity of the crashes (predominantly planar crashes involving single car impacts against well-defined impact surfaces).
Technical Paper

Biomechanical Investigation of Thoracolumbar Spine Fractures in Indianapolis-type Racing Car Drivers during Frontal Impacts

2006-12-05
2006-01-3633
The purpose of this study is to provide an understanding of driver kinematics, injury mechanisms and spinal loads causing thoracolumbar spinal fractures in Indianapolis-type racing car drivers. Crash reports from 1996 to 2006, showed a total of forty spine fracture incidents with the thoracolumbar region being the most frequently injured (n=15). Seven of the thoracolumbar fracture cases occurred in the frontal direction and were a higher injury severity as compared to rear impact cases. The present study focuses on thoracolumbar spine fractures in Indianapolis-type racing car drivers during frontal impacts and was performed using driver medical records, crash reports, video, still photographic images, chassis accelerations from on-board data recorders and the analysis tool MADYMO to simulate crashes. A 50th percentile, male, Hybrid III dummy model was used to represent the driver.
Technical Paper

Biomechanical Principles of Racecar Seat Design for Side Impact Protection

2004-11-30
2004-01-3515
Recent developments in seat design for racecar drivers have proven to be very effective in minimizing injuries in side impacts. The features of the seats that present significant improvements over previous concepts are based on biomechanical principles that were learned from crash recorder based investigations of Indy car crashes. Insights gained from these studies led to an understanding of critical factors that provide effective support and protection of the driver in a high-severity side impact crash. Transferring these concepts from single seat chassis cars to stock car and sports car seats has led to significant improvements in driver side impact protection. The paper will describe these principles, present sled test performance data showing the benefits of proper seat design and will give examples of current commercially available seat designs for stock car and sports car racing.
Technical Paper

Biomechanical and Scaling Bases for Frontal and Side Impact Injury Assessment Reference Values

2003-10-27
2003-22-0009
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, EuroSID2 and SID-IIs.
Technical Paper

Biomechanical and Scaling Basis for Frontal and Side Impact Injury Assessment Reference Values

2016-11-07
2016-22-0018
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, ES-2 and SID-IIs.
Technical Paper

Biomechanics of Seat Belt Design

1972-02-01
720972
This paper discusses the development of adequate criteria and evaluation methods for seat belt restraint design. These criteria should include the effect of seat belts in abdominal injury as well as head injury. It is concluded that belt load limiters and energy-absorbing devices should limit head-to-vehicle contact, ensure that the lap belt maintains proper contact with the bony pelvic girdle, and limit the belt loads. Studies are made of pulse shape and belt fabrics. Currently available mathematical models are used for the studies included in the paper.
Technical Paper

Bolster Impacts to the Knee and Tibia of Human Cadavers and an Anthropomorphic Dummy

1978-02-01
780896
Knee bolsters on the lower instrument panel have been designed to control occupant kinematics during sudden deceleration. However, a wide variability in car occupant anthropometry and choice of seating posture indicates that lower-extremity contacts with the impingement bolster could predominantly load the flexed leg through the knee (acting through the femur) or through the tibia (acting through the knee joint). Potential injuries associated with these types of primary loading may vary significantly and an understanding of potential trauma mechanisms is important for proper occupant restraint.
Technical Paper

Brain Injury Prediction for Indy Race Car Drivers Using Finite Element Model of the Human Head

2004-11-30
2004-01-3539
The objective of this work was to evaluate a new tool for assessing brain injury. Many race car drivers have suffered concussion and other brain injuries and are in need of ways of evaluating better head protective systems and equipment. Current assessment guidelines such as HIC may not be adequate for assessing all scenarios. Finite element models of the brain have the potential to provide much better injury prediction for any scenario. At a previous Motorsports conference, results of a MADYMO model of a racing car and driver driven by 3-D accelerations recorded in actual crashes were presented. Model results from nine cases, some with concussion and some not, yielded head accelerations that were used to drive the Wayne State University Head Injury Model (WSUHIM). This model consists of over 310,000 elements and is capable of simulating direct and indirect impacts. It has been extensively validated using published cadaveric test data.
Technical Paper

Brain Injury Risk Assessment of Frontal Crash Test Results

1994-03-01
941056
An objective, biomechanically based assessment is made of the risks of life-threatening brain injury of frontal crash test results. Published 15 ms HIC values for driver and right front passenger dummies of frontal barrier crash tests conducted by Transport Canada and NHTSA are analyzed using the brain injury risk curve of Prasad and Mertz. Ninety-four percent of the occupants involved in the 30 mph, frontal barrier compliance tests had risks of life-threatening brain injury less than 5 percent. Only 3 percent had risks greater than 16 percent which corresponds to 15 ms HIC > 1000. For belt restrained occupants without head contact with the interior, the risks of life-threatening brain injury were less than 2 percent. In contrast, for the more severe NCAP test condition, 27 percent of the drivers and 21 percent of the passengers had life-threatening brain injury risks greater than 16 percent.
Technical Paper

Comparison of the EUROSID and SID Impact Responses to the Response Corridors of the International Standards Organization

1989-02-01
890604
Side impact tests were conducted on the EUROSID and SID to assess their biofidelity compared to the response requirements of the international Standards Organization. The body regions evaluated were the head, neck, thorax, shoulder, abdomen, and pelvis. Test conditions and data normalization procedures are outlined in the report. Data plots are given which compare the impact response of each dummy to the ISO requirements. The EUROSID gave humanlike responses for most tests involving padded surface impacts, but its responses were not humanlike for rigid surface impacts. Overall, the EUROSID responses were more humanlike than the responses of the SID.
Technical Paper

Crash Protection of Stock Car Racing Drivers - Application of Biomechanical Analysis of Indy Car Crash Research

2006-11-06
2006-22-0016
Biomechanical analysis of Indy car crashes using on-board impact recorders (Melvin et al. 1998, Melvin et al. 2001) indicates that Indy car driver protection in high-energy crashes can be achieved in frontal, side, and rear crashes with severities in the range of 100 to 135 G peak deceleration and velocity changes in the range of 50 to 70 mph. These crashes were predominantly single-car impacts with the rigid concrete walls of oval tracks. This impressive level of protection was found to be due to the unique combination of a very supportive and tight-fitting cockpit-seating package, a six-point belt restraint system, and effective head padding with an extremely strong chassis that defines the seat and cockpit of a modern Indy car. In 2000 and 2001, a series of fatal crashes in stock car racing created great concern for improving the crash protection for drivers in those racecars.
X