Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Abdominal Injuries in Frontal Crashes: Influence of Occupant Age and Seating Position

2018-04-03
2018-01-0535
Objective: This study investigated the incidence of abdominal injuries in frontal crashes by occupant age and seating position. It determined the risk for abdominal injury (AIS 2+) by organ and injury source. Methods: 1997-2015 NASS-CDS was analyzed to estimate the occurrence of abdominal injuries in non-ejected, belted occupants involved in frontal crashes. Vehicles were included with 1997+ model year (MY). The annual incidence and rate for different types of abdominal injury were estimated with standard errors. The sources for abdominal injury were determined. Results: 77.8% of occupants were drivers, 16.7% were right-front passengers and 5.4% were rear passengers. Rear passengers accounted for 77.1% of 8-11 year old (yo) and 17.2% of 12-17 yo group. The risk for moderate abdominal injury (MAIS 2 + abdo) was 0.30% ± 0.053% in drivers, 0.32% ± 0.086% in right-front passengers and 0.38% ± 0.063% in rear occupants.
Technical Paper

Assessing Submarining and Abdominal Injury Risk in the Hybrid III Family of Dummies

1989-10-01
892440
This paper details the development of an abdominal injury assessment device for loading due to belt restraint submarining in the Hybrid III family of dummies. The design concept and criteria, response criteria, choice of injury criterion, and validation are explained. Conclusions of this work are: 1) Abdominal injury assessment for belt loading due to submarining is now possible in the Hybrid III family of dummies. 2) The abdomen developed has biofidelity in its force deflection characteristics for belt loading, is capable of detecting the occurrence of submarining, and can be used to determine the probability of abdominal injury when submarining occurs. 3) Installation of the abdomen in the Hybrid III dummy does not change the dummy kinematics when submarining does not occur. 4) When submarining does occur, the dummy kinematics are very similar to baseline Hybrid III kinematics, except for torso angle.
Technical Paper

Assessing the Safety Performance of Occupant Restraint Systems

1990-10-01
902328
The purpose of this study was to investigate approaches evaluating the performance of safety systems in crash tests and by analytical simulations. The study was motivated by the need to consider the adequacy of injury criteria and tolerance levels in FMVSS 208 measuring safety performance of restraint systems and supplements. The study also focused on additional biomechanical criteria and performance measures which may augment FMVSS 208 criteria and alternative ways to evaluate dummy responses rather than by comparison to a tolerance level. Additional analysis was conducted of dummy responses from barrier crash and sled tests to gain further information on the performance of restraint systems. The analysis resulted in a new computer program which determined several motion and velocity criteria from measurements made in crash tests.
Journal Article

Basilar Skull Fractures by Crash Type and Injury Source

2011-04-12
2011-01-1126
Purpose: This study investigates NASS-CDS data on basilar skull fractures by crash type and injury source for various crash scenarios to understand the injury risks, injury mechanisms and contact sources. Methods: 1993-2008 NASS-CDS data was used to study basilar skull fractures in adult front occupants by crash type and injury source. Injury risks were determined using weighted data for occupants with known injury status in 1994+ model year vehicles. In-depth analysis was made of far-side occupants in side impacts and rear crashes using the NASS electronic cases. Results: Basilar skull fractures occur in 0.507 ± 0.059% of rollovers and 0.255 ± 0.025% of side impacts. The lowest risk is in rear impacts at 0.015 ± 0.007%. The most common contact source is the roof, side rails and header (39.0%) in rollovers, the B-pillar (25.8%) in side impacts and head restraint (55.3%) in rear crashes.
Technical Paper

Biofidelity and Injury Assessment in Eurosid I and Biosid

1995-11-01
952731
Side impact pendulum tests were conducted on Eurosid I and Biosid to assess the biofidelity of the thorax, abdomen and pelvis, and determine injury tolerance levels. Each body region was impacted at 4.5, 6.7, and 9.4 m/s using test conditions which duplicate cadaver impacts with a 15 cm flat-circular 23.4 kg rigid mass. The cadaver database establishes human response and injury risk assessment in side impact. Both dummies showed better biofidelity when compared to the lowest-speed cadaver response corridor. At higher speeds, peak force was substantially higher. The average peak contact force was 1.56 times greater in Biosid and 2.19 times greater in Eurosid 1 than the average cadaver response. The Eurosid I abdomen had the most dissimilar response and lacks biofidelity. Overall, Biosid has better biofidelity than Eurosid I with an average 21% lower peak load and a closer match to the duration of cadaver impact responses for the three body regions.
Technical Paper

Biomechanics of Bone and Tissue: A Review of Material Properties and Failure Characteristics

1986-10-01
861923
This paper contains a review of current information on biological structure, material properties and failure characteristics of bone, articular cartilage, ligament and tendon. The load-deformation response of biological tissues is presented with particular reference to the microstructure of the material. Although many of the tissues have been characterized as linear, elastic and isotropic materials, they actually have a more complicated response to load, which includes stiffening with increasing strain, inelastic yield, and strain rate sensitivity. Failure of compact and cancellous bone depends on the rate, type, and direction of loading. Soft biological tissues are vlscoelastie and exhibit a higher load tolerance with an increasing rate of loading. The paper includes a discussion on the basic principles of biomechanics and emphasizes material properties and failure characteristics of biological tissues subjected to impact loading.
Technical Paper

Biomechanics of Head Injury — Toward a Theory Linking Head Dynamic Motion, Brain Tissue Deformation and Neural Trauma

1988-10-01
881708
A “central” theory for the biomechanics of brain injury is proposed that includes the construct that acceleration of the head, per se, is not the proximate cause of injury. Rather, rapid motion of the skull causes displacement of the hard bony structures of the head against the soft tissues of the brain, which lag in their motion due to inertia and loose coupling to the skull. Relative displacement between brain and skull produces deformation of brain tissue and stretching of bridging veins, which contribute to the tissue-level causes of brain injury. The first step in an accurate interpretation of brain injury risk in dummies involves the measurement of the three-dimensional components of translational and rotational acceleration of the head.
Technical Paper

Biomechanics of Nonpenetrating Aortic Trauma: A Review

1983-10-17
831608
Life threatening chest injury can involve partial or full tears of the aorta. Investigations of fatal injuries in automobile accidents indicate that aortic trauma occurs in 10-20% of the cases. The major sites of aortic trauma include the aortic isthmus, the root, and the aortic insertion at the diaphragm - all of which are points of aortic tethering. The biomechanics of the injury process involve stretching of the vessel from points of tethering and hydrodynamic increases in blood pressure, which stretch the tissue to failure at a strain of about 150%. The non-isotropic stretch response of aortic tissue is discussed with reference to the frequent transverse orientation of the laceration. Congenital and pathophysiological conditions also influence the failure characteristics of the tissue. The significant factors associated with traumatic injury of the aorta are discussed in this review paper which is based on published technical information.
Technical Paper

Bounce-Overs: Fixed Object Impacts Followed by Rollovers

2004-03-08
2004-01-0334
In this study, U.S. crash data was analyzed to better understand bounce-over rollovers. Crash data was reviewed to evaluate the distribution of bounce-over crashes and injuries, initiation objects and impact locations. In passenger cars, bounce-over crashes account for 8.4% of rollovers but involve 36.2% of the seriously injured belted drivers. Most bounce-overs are initiated by contact with narrow objects such as a pole, tree or barrier, or large objects such as a ditch or embankment. Contact often occurs in the front of the vehicle. After contact, the vehicle yaws and rolls, and serious injuries are often sustained to the head. Based on field data, a laboratory test was developed to simulate a narrow object bounce-over. The test consists of towing a vehicle laterally on a fixture towards a stationary, angled barrier resting in gravel. The moving fixture is decelerated and the vehicle is released. The vehicle front impacts the edge of the barrier, simulating a narrow object impact.
Technical Paper

Comparative Thoracic Impact Response of Living and Sacrificed Porcine Siblings

1977-02-01
770930
Thoracic impact response and injuries of living and postmortem porcine siblings were investigated to quantify comparative differences. Thirteen male animals, averaging 61.4 kg, from five different porcine litters comprised the two animal samples. Porcine brothers were subjected to similar impact exposures for which at least one brother was tested live, anesthetized and another dead, post rigor with vascular repressurization. Statistically significant differences in biomechanical responses and injuries were observed between live and postmortem siblings. On the average the anesthetized live animals demonstrated a greater thoracic compliance, as measured by increased normalized total deflections (21% Hi), and reduced overall injuries (AIS 14% Lo and rib fractures 26% Lo) at lower peak force levels (13% Lo) than did the postmortem subjects. However, individual comparisons of “match-tested” siblings demonstrated very similar responses in some cases.
Technical Paper

Considerations for a Femur Injury Criterion

1977-02-01
770925
A femur fracture injury criterion is presented that assesses the dependence of the permissible human knee load on the duration of the primary force exposure. Currently a constant allowable femur load limit of 7.6 kN (1700 lb) is specified in FMVSS 208, but recently the Federal Government proposed elevating the allowable limit to 10.0 kN (2250 lb), which is in excess of the limited experimental average static femur fracture force of 8.90 kN (2000 lb). A general analysis of all of the available biomechanics data and mathematical models on femoral impact response and fracture indicates a significant load time dependence for primary pulse durations below 20 ms that can elevate the permissible femur load above the Federally proposed allowable limit of 10.0 kN (2250 lb).
Technical Paper

Crash Causation: A Case Study of Fatal Accident Circumstances and Configurations

1996-02-01
960458
The causes for 131 fatal crashes of lap-shoulder belted occupants were analyzed for crash causation and avoidance opportunities. Fourteen crash scenarios were determined to depict the situation and circumstance of the accidents. Each scenario is discussed in relation to driver age, actions, behavior, errors and aggressiveness, as well as crash type and other factors influencing the crash. Nearly a third of crashes involved a rapid, unpredictable onset by reckless action or mistake of another driver. The remainder were caused by the driver of the case-vehicle. Some were single vehicle crashes primarily related to excessive speed, aggressive driving, and drifting out of lane. The others were multi-vehicle crashes due primarily to inadvertent errors. The most common errors were right-of-way violations at an intersection, loss of control on wet roads, impact of a stationary vehicle, and lane changing errors.
Technical Paper

Crash Injury Prevention: A Case Study of Fatal Crashes of Lap-Shoulder Belted Occupants

1992-11-01
922523
A case study was conducted of 123 crashes involving 144 fatally injured lap-shoulder belted front-seat occupants. The crashes occurred throughout the United States in 1985-86 and involved 97 driver and 47 right-front passenger deaths in new vehicles. A judgment was made by consensus of a safety panel on the potential for saving the victim's life by the addition of safety technology. Supplemental airbags provided the greatest potential for improving the life-saving effectiveness of current lap-shoulder belts. Overall, airbags may have prevented 12% of the belted occupant fatalities and 27% of the deaths in frontal crashes. The benefit of supplemental airbags was greater for the right-front passenger, in part, because of more females and occupants over 60 years of age in that seating position. A majority (68%) of the belted fatalities were judged unpreventable by reasonable restraint or vehicle modifications.
Technical Paper

Crash Injury Risks for Obese Occupants

2008-04-14
2008-01-0528
Obesity rates are reaching an epidemic worldwide. In the US, nearly 40 million people are obese. The automotive safety community is starting to question the impact of obesity on occupant protection. This study investigates fatality and serious injury risks for front-seat occupants by Body Mass Index (BMI). NASS-CDS data was analyzed for calendar years 1993-2004. Occupant exposure and injury was divided in seven BMI categories with obese defined as those with BMI ≥ 30 kg/m2. Injuries were studied for drivers and right-front passengers and included analysis of lap-shoulder belted and unbelted occupants. The results show that obese occupants have a higher fatality risk compared to normal BMI occupants; morbidly obese occupants (BMI ≥ 40 kg/m2) have 2.25 times higher fatality risk (1.15% v 0.51%). The fatality risk for belted obese drivers was 0.29%, which was 6.7 times lower than the 1.94% for those unbelted. These rates are similar to other BMI occupants.
Technical Paper

Critical Issues in Finite Element Modeling of Head Impact

1982-02-01
821150
Current finite element models of head impact involve a geometrically simplified fluid-filled shell composed of homogeneous, linear and (visco) elastic materials as the primary surrogate of the human skull and brain. The numerical procedure, which solves the mechanical response to impact, requires and presumes continuity of stress and displacement between elements, a defined boundary condition simulating the neck attachment and a known forcing function. Our critical review of the models discussed, primarily, the technical aspects of the approximations made to simulate the head and the limitations of the proposed analytical tools in predicting the response of biological tissue. The following critical features were identified as major factors which compromised the accuracy and objectivity of the models: - The brain was approximated by a fluid contained in an elastic or rigid shell with no provision for relative motion between the shell and fluid.
Technical Paper

Determining Tolerance to Compression and Viscous Injury in Frontal and Lateral Impacts

1990-10-01
902330
Considerable research has shown that there are two mechanisms of blunt injury. One is by crushing the tissue at low velocities of deformation (compression mechanism, C) and the other by a rate-dependent deformation at higher speeds that exceed the energy dissipation of the tissue (viscous mechanism, VC). Analysis of injury causation in experiments must consider both mechanisms. For an impact, there is a peak compression and Viscous response; however, it is not possible a priori to determine which mechanism is associated with the injury. Thus, there has been a need to identify the effective velocity separating the two mechanisms of injury. This study provides new injury tolerances and probability functions for various body and tissue impacts based on injury data related to a compression or viscous mechanism. Six data sets were subjected to statistical analysis to predict injury based on maximum compression and Viscous response of the surrogate or tissue.
Technical Paper

Effectiveness of High-Retention Seats in Preventing Fatality: Initial Results and Trends

2003-03-03
2003-01-1351
In 1995, new seat specifications were adopted by GM to provide high retention and improve occupant safety in rear crashes. With more than five years of phase-in of high retention (HR) seats, an analysis of FARS was undertaken to determine the initial field performance of HR seats in preventing fatalities. The 1991-2000 FARS was sorted for fatal rear-impacted vehicles. Using a VIN decoder, GM vehicles with HR front seats were sorted from those with baseline (pre-HR) seats. The fatal rear-impacted vehicle crashes were subdivided into several groups for analysis: 1) single-vehicle rear impacts, 2) two-vehicle rear crashes involving light striking vehicles, and 3) two-vehicle crashes involving heavy trucks and tractor-trailers, and multi-vehicle (3+) rear crashes.
Technical Paper

Effectiveness of Safety Belts and Airbags in Preventing Fatal Injury

1991-02-01
910901
Airbags and safety belts are now viewed as complements for occupant protection in a crash. There is also a view that no single solution exists to ensure safety and that a system of protective technologies is needed to maximize safety in the wide variety of real automotive crashes. This paper compares the fatality prevention effectiveness, and biomechanical principles of occupant restraint systems. It focuses on the effectiveness of various systems in preventing fatal injury assuming the restraint is available and used. While lap-shoulder belts provide the greatest safety, airbags protect both belted and unbelted occupants.
X