Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

A Computer Simulation Analysis of Safety Critical Maneuvers for Assessing Ground Vehicle Dynamic Stability

1993-03-01
930760
Ground vehicle dynamic stability, including spinout and rollover, is highly dependent on maneuvering conditions and the nonlinear force response characteristics of tires. Depending on vehicle configuration, unstable behavior requires high, sustained lateral acceleration, and some maneuver induced excitation of the roll and yaw mode dynamics. Dynamic instability in some vehicles can be induced by a steering reversal maneuver that involves sustained limit performance lateral acceleration. Using a validated vehicle dynamics simulation, analysis is presented to illustrate what constitutes a critical stability sensitive maneuver. Two example test cases are used to show that a critical stability sensitive maneuver must be more severe than a single lane change. Even reaching tire saturation limits during an aggressive single lane change does not give the sustained lateral acceleration required to provoke instability conditions.
Technical Paper

A Human Factors Simulation Investigation of Driver Route Diversion and Alternate Route Selection Using In-Vehicle Navigation Systems

1991-10-01
912731
This paper describes a human factors simulation study of the decision making behavior of drivers attempting to avoid nonrecurring congestion by diverting to alternate routes with the aid of in-vehicle navigation systems. This study is the first phase of a two part project in which the second phase will apply the driver behavior data to a simulation model analysis of traffic flow. The object of the driver behavior experiment was to compare the effect of various experimental navigation systems on driver route diversion and alternate route selection. The experimental navigation system configurations included three map based systems with varying amounts of situation information and a non map based route guidance system. The overall study results indicated that navigation system characteristics can have a significant effect on driver diversion behavior, with better systems allowing more anticipation of traffic congestion.
Technical Paper

Analysis of Potential Road/Terrain Characterization Rating Metrics

2004-10-26
2004-01-2640
The U.S. Army uses the root mean square and power spectral density of elevation to characterize road/terrain (off-road) roughness for durability. This paper describes research aimed toward improving these metrics. The focus is on taking previously developed metrics and applying them to mathematically generated terrains to determine how each metric discerns the relative roughness of the terrains from a vehicle durability perspective. Multiple terrains for each roughness level were evaluated to determine the variability for each terrain rating metric. One method currently under consideration is running a relatively simple, yet vehicle class specific, model over a given terrain and using predicted vehicle response(s) to classify or characterize the terrain.
Technical Paper

Characteristics Influencing Ground Vehicle Lateral/Directional Dynamic Stability

1991-02-01
910234
Lateral/directional dynamics involve vehicle yawing, rolling and lateral translation motions and dynamic stability concerns directional behavior (i.e. spinout) and rollover. Previous research has considered field test and computer simulation methods and results concerning lateral/directional stability. This paper summarizes measurements and simulation analysis of a wide range of vehicles regarding directional and rollover stability. Directional stability is noted to be strongly influenced by lateral load transfer distribution (LTD) between the front and rear axles LTD influences tire side force saturation properties, and should be set up so that side forces at the rear axle do not saturate before the front axle under hard maneuvering conditions in order to avoid limit oversteer and spinout.
Technical Paper

Computer Simulation Analysis of Light Vehicle Lateral/Directional Dynamic Stability

1999-03-01
1999-01-0124
Dynamic stability is influenced by vehicle and tire characteristics and operating conditions, including speed and control inputs. Under limit performance operating conditions, maneuvering can force a vehicle into oversteer and high sideslip. The high sideslip results in limit cornering conditions, which might proceed to spinout, or result in tip-up and rollover. Oversteer and spinout result from rear axle tire side force saturation. Tip-up and rollover occur when tire side forces are sufficient to induce lateral acceleration that will overcome the stabilizing moment of vehicle weight. With the use of computer simulation and generic vehicle designs, this paper explores the vehicle and tire characteristics and maneuvering conditions that lead to loss of directional control and potential tip-up and rollover.
Technical Paper

Driving Simulation — Requirements, Mechanization and Application

1980-02-01
800448
This paper discusses recent developments and application of driving simulators. Simulation of driving via films has been used for a number of years as a driver education tool. More recently, interactive simulators have been developed for research and training applications. Improvements are accelerating due to a combination of ongoing research needs, and general state of the art advances in hardware and software technology. Modern simulator requirements are reviewed from the point of view of both driver characteristics (vision, audition, proprioception, vestibular motion sensation) and task demands (e.g., steering and speed control, risk perception, decision making, general workload level). A variety of simulator applications are summarized, including comparison with subsequent field tests. These applications include studies involving drunk driving and risk taking, reduced visibility and delineation, and signing.
Technical Paper

Field Testing and Computer Simulation Analysis of Ground Vehicle Dynamic Stability

1990-02-01
900127
This paper considers ground vehicle lateral/directional stability which is of primary concern in traffic safety. Lateral/directional dynamics involve yawing, rolling and lateral acceleration motions, and stability concerns include spinout and rollover. Lateral/directional dynamics are dominated by tire force response which depends on horizontal slip, camber angle and normal load. Vehicle limit maneuvering conditions can lead to tire force responses that result in vehicle spinout and rollover. This paper describes accident analysis, vehicle testing and computer simulation analysis designed to give insight into basic vehicle design variables that contribute to stability problems. Field test procedures and results for three vehicles are described. The field test results are used to validate a simulation model which is then analyzed under severe maneuvering conditions to shed light on dynamic stability issues.
Technical Paper

Further Analysis of Potential Road/Terrain Characterization Rating Metrics

2005-11-01
2005-01-3562
The U.S. Army uses the root mean square and power spectral density of elevation to characterize road/terrain (off-road) roughness for durability. This paper describes research aimed toward improving these metrics. The focus is on taking previously developed metrics and applying them to mathematically generated terrains to determine how each metric discerns the relative roughness of the terrains from a vehicle durability perspective. Multiple terrains for each roughness level were evaluated to determine the variability for each terrain rating metric. One method currently under consideration is running a relatively simple, yet vehicle class specific, model over a given terrain and using predicted vehicle response(s) to classify or characterize the terrain.
Technical Paper

Low Cost Driving Simulation for Research, Training and Screening Applications

1995-02-01
950171
Interactive driving simulation is attractive for a variety of applications, including screening, training and licensing, due to considerations of safety, control and repeatability. However, widespread dissemination of these applications will require modest cost simulator systems. Low cost simulation is possible given the application of PC level technology, which is capable of providing reasonable fidelity in visual, auditory and control feel cuing. This paper describes a PC based simulation with high fidelity vehicle dynamics, which provides an easily programmable visual data base and performance measurement system, and good fidelity auditory and steering torque feel cuing. This simulation has been used in a variety of applications including screening truck drivers for the effects of fatigue, research on real time monitoring for driver drowsiness and measurement of the interference effect of in-vehicle IVHS tasks on driving performance.
Technical Paper

Meeting Important Cuing Requirements with Modest, Real-Time, Interactive Driving Simulations

1994-03-01
940228
Interactive simulation requires providing appropriate sensory cuing and stimulus/response dynamics to the driver. Sensory feedback can include visual, auditory, motion, and proprioceptive cues. Stimulus/response dynamics involve reactions of the feedback cuing to driver control inputs including steering, throttle and brakes. The stimulus/response dynamics include both simulated vehicle dynamics, and the response dynamics of the simulation hardware including computer processing delays. Typically, simulation realism will increase with sensory fidelity and stimulus/response dynamics that are equivalent to real-world conditions (i.e. without excessive time delay or phase lag). This paper discusses requirements for sensory cuing and stimulus/response dynamics in real-time, interactive driving simulation, and describes a modest fixed-base (i.e. no motion) device designed with these considerations in mind.
Technical Paper

Requirements for Vehicle Dynamics Simulation Models

1994-03-01
940175
Computer simulation and real-time, interactive approaches for analysis, interactive driving simulation, and hardware-in-the-loop testing are finding increasing application in the research and development of advanced automotive concepts, highway design, etc. Vehicle dynamics models serve a variety of purposes in simulation. A model must have sufficient complexity for a given application but should not be overly complicated. In interactive driving simulation, vehicle dynamics models must provide appropriate computation for sensory feedback such as visual, motion, auditory, and proprioceptive cuing. In stability and handling simulations, various modes must be properly represented, including lateral/directional and longitudinal degrees of freedom. Limit performance effects of tire saturation that lead to plow out, spin out, and skidding require adequate tire force response models.
Technical Paper

Steady State and Transient Analysis of Ground Vehicle Handling

1987-02-23
870495
This paper presents simple linear and non-linear dynamic models and numerical procedures designed to permit efficient vehicle dynamics analysis on microcomputers. Vehicle dynamics are dominated by tire forces and their precursor input variables, and a few inertial and suspension properties. The steady state and dynamic models discussed herein include a comprehensive, unlimited maneuver tire model with relatively simple vehicle suspension kinematics and inertial dynamics to cover the full vehicle maneuvering range from straight running to combined limit cornering and braking or acceleration. An attempt was made to minimize the required tire and vehicle model parameter set and to include easily obtainable parameters. The computer analysis procedures include: A steady state model for determining perturbation side force coefficients, and a stability factor and maneuvering time constant for lateral/directional control.
Technical Paper

The Relative Sensitivity of Size and Operational Conditions on Basic Tire Maneuvering Properties

2002-03-04
2002-01-1182
Basic performance properties of tires significantly influence the lateral/directional (steering) stability and handling of highway vehicles. These properties include cornering stiffness and peak and slide coefficients of friction. This paper considers some detailed tire machine measurements of lateral tire performance. A large database of tire properties for a wide range of highway vehicles is also analyzed. A regression analysis approach is used to define the sensitivity of various size and operational (speed, pressure and load) characteristics on tire behavior. The paper discusses the manner in which these properties vary with tire size and operational conditions, and the effect of the properties on vehicle stability and handling.
Technical Paper

The Use of Simulation in Truck Safety Research, Driver Training and Proficiency Testing

1990-10-01
902271
Real time man-in-the-loop simulation can be used in a variety of research, testing and training roles where safety, efficiency and/or economy are important. Simulation can allow complete control and uniformity over driving conditions and permit analysis of a range of vehicle and driver behavior variables. Simulation complexity and fidelity requirements will vary depending on application requirements. This paper reviews past and current driving simulation development efforts and applications. Simulation requirements are assessed relative to various applications, including vehicle handling, driver behavior, training, licensing and fitness for duty testing.
X