Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental and Theoretical Analysis of Wankel Engine Performance

1978-02-01
780416
A model for predicting the performance and emissions characteristics of Wankel engines has been developed and tested. Each chamber is treated as an open thermodynamic system and the effects of turbulent flame propagation, quench layer formation, gas motion, heat transfer and seal leakage are included. The experimental tests were carried out on a Toyo Kogyo 12B engine under both motoring and firing conditions and values for the effective seal leakage area and turbulent heat transfer coefficient were deduced. The agreement between the predicted and measured performances was reasonable. Parametric studies of the effects of reductions in seal leakage and heat transfer were carried out and the results are presented.
Technical Paper

Predicting the Emissions and Performance Characteristics of a Wankel Engine

1974-02-01
740186
A performance model of a Wankel engine is developed which performs a leakage mass balance, accounts for heat transfer and flame quenching, and predicts the mass fraction burned as a function of chamber pressure. Experiments were performed on a production Wankel engine to obtain chamber pressure-time diagrams, and engine performance and emissions data. Model predictions of mass burned, global heat transfer, and hydrocarbon emission gave good agreement with measurements. Predictions of oxides of nitrogen are higher than measurements, especially at low loads. This is thought to be due to the adiabatic core gas assumption in the model. The need for a Wankel boundary layer study is identified.
Technical Paper

Time Resolved Measurements of Exhaust Composition and Flow Rate in a Wankel Engine

1975-02-01
750024
Measurements were made of exhaust histories of the following species: unburned hydrocarbons (HC), carbon monoxide, carbon dioxide, oxygen, and nitric oxide (NO). The measurements show that the exhaust flow can be divided into two distinct phases: a leading gas low in HC and high in NO followed by a trailing gas high in HC and low in NO. Calculations of time resolved equivalence ratio throughout the exhaust process show no evidence of a stratified combustion. The exhaust mass flow rate is time resolved by forcing the flow to be locally quasi-steady at an orifice placed in the exhaust pipe. The results with the quasi-steady assumption are shown to be consistent with the measurements. Predictions are made of time resolved mass flow rate which compare favorably to the experimental data base. The composition and flow histories provide sufficient information to calculate the time resolved flow rates of the individual species measured.
X