Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Simple Approach to Studying the Relation between Fuel Rate Heat Release Rate and NO Formation in Diesel Engines

1999-10-25
1999-01-3548
Modern diesel engine injection systems are largely computer controlled. This opens the door for tailoring the fuel rate. Rate shaping in combination with increased injection pressure and nozzle design will play an important role in the efforts to maintain the superiority of the diesel engine in terms of fuel economy while meeting future demands on emissions. This approach to studying the potential of rate shaping in order to reduce NO formation is based on three sub-models. The first model calculates the fuel rate by using standard expressions for calculating the areas of the dimensioning flow paths in the nozzle and the corresponding discharge coefficients. In the second sub-model the heat release rate is described as a function of available fuel energy, i.e. fuel mass, in the cylinder. The third submodel is the multizone combustion model that calculates NO for a given heat release rate under assumed air /fuel ratios.
Technical Paper

A Study of the Homogeneous Charge Compression Ignition Combustion Process by Chemiluminescence Imaging

1999-10-25
1999-01-3680
An experimental study of the Homogeneous Charge Compression Ignition (HCCI) combustion process has been conducted by using chemiluminescence imaging. The major intent was to characterize the flame structure and its transient behavior. To achieve this, time resolved images of the naturally emitted light were taken. Emitted light was studied by recording its spectral content and applying different filters to isolate species like OH and CH. Imaging was enabled by a truck-sized engine modified for optical access. An intensified digital camera was used for the imaging. Some imaging was done using a streak-camera, capable of taking eight arbitrarily spaced pictures during a single cycle, thus visualizing the progress of the combustion process. All imaging was done with similar operating conditions and a mixture of n-heptane and iso-octane was used as fuel. Some 20 crank angles before Top Dead Center (TDC), cool flames were found to exist.
Technical Paper

A Theoretical Study of the Potential of NOx Reduction by Fuel Rate Shaping in a DI Diesel Engine

2000-10-16
2000-01-2935
In this paper, a theoretical study is presented where fuel rate shaping is analyzed in combination with EGR as a method for reducing NOx formation. The analytical tools used include an empirically based model to convert fuel rate to heat release rate, and a zero dimensional multizone combustion model to calculate combustion products, local flame temperatures and NOx emissions at a given heat release rate. The multizone model, which has been presented earlier, includes flame radiation and convective heat losses. Several geometrical shapes of the fuel rate are tested for different combustion timings and EGR rates. It is found that the fuel rate giving the lowest NOx formation varies with the injection timing. In order to lower the NOx emissions at normal and advanced injection timings, the fuel rate should have a rather long duration, and start at its maximum level followed by a slow decay.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Technical Paper

An Optical Study of the Effects of Diesel-like Fuels with Different Densities on a Heavy-duty CI Engine with a Wave-shaped Piston Bowl Geometry

2023-04-11
2023-01-0261
The novel wave-shaped bowl piston geometry design with protrusions has been proved in previous studies to enhance late-cycle mixing and therefore significantly reduce soot emissions and increase engine thermodynamic efficiency. The wave-shaped piston is characterized by the introduction of evenly spaced protrusions around the inner wall of the bowl, with a matching number with the number of injection holes, i.e., flames. The interactions between adjacent flames strongly affect the in-cylinder flow and the wave shape is designed to guide the near-wall flow. The flow re-circulation produces a radial mixing zone (RMZ) that extends towards the center of the piston bowl, where unused air is available for oxidation promotion. The waves enhance the flow re-circulation and thus increase the mixing intensity of the RMZ.
Journal Article

Analysis of EGR Effects on the Soot Distribution in a Heavy Duty Diesel Engine using Time-Resolved Laser Induced Incandescence

2010-10-25
2010-01-2104
The soot distribution as function of ambient O₂ mole fraction in a heavy-duty diesel engine was investigated at low load (6 bar IMEP) with laser-induced incandescence (LII) and natural luminosity. A Multi-YAG laser system was utilized to create time-resolved LII using 8 laser pulses with a spacing of one CAD with detection on an 8-chip framing camera. It is well known that the engine-out smoke level increases with decreasing oxygen fraction up to a certain level where it starts to decrease again. For the studied case the peak occurred at an O₂ fraction of 11.4%. When the oxygen fraction was decreased successively from 21% to 9%, the initial soot formation moved downstream in the jet. At the lower oxygen fractions, below 12%, no soot was formed until after the wall interaction. At oxygen fractions below 11% the first evidence of soot is in the recirculation zone between two adjacent jets.
Technical Paper

Analysis of Smokeless Spray Combustion in a Heavy-Duty Diesel Engine by Combined Simultaneous Optical Diagnostics

2009-04-20
2009-01-1353
A heavy duty diesel engine operating case producing no engine-out smoke was studied using combined simultaneous optical diagnostics. The case was close to a typical low load modern diesel operating point without EGR. Parallels were drawn to the conceptual model by Dec and results from high-pressure combustion vessels. Optical results revealed that no soot was present in the upstream part of the jet cross-section. Soot was only observed in the recirculation zones close to the bowl perimeter. This indicated very slow soot formation and was explained by a significantly higher air entrainment rate than in Dec's study. The local fuel-air equivalence ratio, Φ, at the lift-off length was estimated to be 40% of the value in Dec's study. The lower Φ in the jet produced a different Φ -T-history, explaining the soot results. The increased air entrainment rate was mainly due to smaller nozzle holes and increased TDC density.
Journal Article

Analysis of the Correlation Between Engine-Out Particulates and Local Φ in the Lift-Off Region of a Heavy Duty Diesel Engine Using Raman Spectroscopy

2009-04-20
2009-01-1357
The local equivalence ratio, Φ, was measured in fuel jets using laser-induced spontaneous Raman scattering in an optical heavy duty diesel engine. The measurements were performed at 1200 rpm and quarter load (6 bar IMEP). The objective was to study factors influencing soot formation, such as gas entrainment and lift-off position, and to find correlations with engine-out particulate matter (PM) levels. The effects of nozzle hole size, injection pressure, inlet oxygen concentration, and ambient density at TDC were studied. The position of the lift–off region was determined from OH chemiluminescence images of the flame. The liquid penetration length was measured with Mie scattering to ensure that the Raman measurement was performed in the gaseous part of the spray. The local Φ value was successfully measured inside a fuel jet. A surprisingly low correlation coefficient between engine-out PM and the local Φ in the reaction zone were observed.
Journal Article

Challenges for In-Cylinder High-Speed Two-Dimensional Laser-Induced Incandescence Measurements of Soot

2011-04-12
2011-01-1280
Laser-Induced Incandescence (LII) has traditionally been considered a straightforward and reliable optical diagnostic technique for in-cylinder soot measurements. As a result, it is nowadays even possible to buy turn-key LII measurement systems. During recent years, however, attention has been drawn to a number of unresolved challenges with LII. Many of these are relevant mostly for particle sizing using time-resolved LII, but also two-dimensional soot volume fraction measurements are affected, especially in regions with high soot concentrations typically found in combustion engines. In this work the focus is on the specific challenges involved in performing high-repetition rate measurements with LII in diesel engines. All the mentioned issues might not be possible to overcome but they should nevertheless be known and their potential impact should be considered.
Technical Paper

Characterisation and Model Based Optimization of a Complete Diesel Engine/SCR System

2009-04-20
2009-01-0896
In order to make efficient use of a Diesel engine equipped with an SCR system, it's important to have a complete system approach when it comes to calibration of the engine and the aftertreatment system. This paper presents a complete model of a heavy duty diesel engine equipped with a vanadia based SCR system. The diesel engine uses common rail fuel injection, a variable geometry turbocharger (VGT) and cooled EGR. The engine model consists of a quasi steady gas exchange model combined with a two-zone zero dimensional combustion model. The combustion model is a predictive heat release model. Using the calculated zone temperatures, the corresponding NOx concentration is given by the original Zeldovich mechanism. The SCR catalyst model is of the state space type. The basic model structure is a series of continuously stirred tank reactors and the catalyst walls are discretized to describe mass transport inside the porous structure.
Technical Paper

Combustion Chamber Geometry Effects on the Performance of an Ethanol Fueled HCCI Engine

2008-06-23
2008-01-1656
Homogeneous Charge Compression Ignition (HCCI) combustion is limited in maximum load due to high peak pressures and excessive combustion rate. If the rate of combustion can be decreased the load range can be extended. From previous studies it has been shown that by using a deep square bowl in piston geometry the load range can be extended due to decreased heat release rates, pressure rise rates and longer combustion duration compared to a disc shaped combustion chamber. The explanation for the slower combustion was found in the turbulent flow field in the early stages of the intake stroke causing temperature stratifications throughout the charge. With larger temperature differences the combustion will be longer compared to a perfectly mixed charge with less temperature variations. The methods used for finding this explanation were high-speed cycle-resolved chemiluminescence imaging and fuel tracer planar laser induced fluorescence (PLIF), together with large eddy simulations (LES).
Technical Paper

Combustion Diagnostics by Means of Multizone Heat Release Analysis and NO Calculation

1998-05-04
981424
In this paper a combustion diagnostic method is presented where measured pressure data is used to calculate the heat release, local temperatures and concentrations of NO and other species. This is done by a multizone model where the lambda value, i.e. 1/equivalence ratio, in each zone can be chosen arbitrarily. In homogenous charge engines lambda is given by the global air/fuel ratio. The local lambdas during initial combustion in stratified charge and diesel engines have to be estimated either as an average value or with a chosen distribution. One new zone of each local lambda is generated and the temperature, volume and species in all old zones are updated at each time step of calculation. In this paper the model is demonstrated by using pressure data from pre-mixed and direct injected stratified charge natural gas SI engines and from a DI diesel engine.
Technical Paper

Comparison of Heat Release and NOx Formation in a DI Diesel Engine Running on DME and Diesel Fuel

2001-03-05
2001-01-0651
Although there seems to be a consensus regarding the low emission potential of DME, there are still different opinions about why the low NOx emissions can be obtained without negative effects on thermal efficiency. Possible explanations are: The physical properties of DME affecting the spray and the mixture formation Different shape and duration of the heat release in combination with reduced heat losses In this paper an attempt is made to increase the knowledge of DME in relation to diesel fuel with respect to heat release and NOx formation. The emphasis has been to create injection conditions as similar as possible for both fuels. For that purpose the same injection system (CR), injection pressure (270 bar), injection timing and duration have been used for the two fuels. The only differences were the diameters of the nozzle holes, which were chosen to give the same fuel energy supply, and the physical properties of the fuels.
Technical Paper

Comparison of Laser-Extinction and Natural Luminosity Measurements for Soot Probing in Diesel Optical Engines

2016-10-17
2016-01-2159
Soot emissions from diesel internal combustion engines are strictly regulated nowadays. Laser extinction measurement (LEM) and natural luminosity (NL) of sooty flames are commonly applied to study soot. LEM measures soot along the laser beam path and it can probe soot regardless of temperature. NL integrates the whole field of view and relies on soot temperature. In this work, a comparison of simultaneously recorded LEM and NL data has been performed in a heavy-duty optical engine. A 685 nm laser beam is used for LEM. The laser was modulated at 63 kHz, which facilitated subtraction of the background NL signal from the raw LEM data. By Beer-Lambert’s law, KL factor can be calculated and used as a metric to describe soot measurements. A compensation of transmitted laser intensity fluctuation and soot deposits on optical windows has been performed in this work.
Technical Paper

Comparison of heat losses at the impingement point and in between two impingement points in a diesel engine using phosphor thermometry

2019-12-19
2019-01-2185
In-cylinder heat losses in diesel engines reduce engine efficiency significantly and account for a considerable amount of injected fuel energy. A great part of the heat losses during diesel combustion presumably arises from the impingement of the flame. The present study compares the heat losses at the point where the flame impinges onto the piston bowl wall and the heat losses between two impingement points. Measurements were performed in a full metal heavy-duty diesel engine with a small optical access through a removed exhaust valve. The surface temperature at the impingement point of the combusting diesel spray and at a point in between two impingement points was determined using phosphor thermometry. The dynamic heat fluxes and the heat transfer coefficients which result from the surface temperature measurements are estimated. Simultaneous cylinder pressure measurements and high-speed videos are associated to individual surface temperature measurements.
Technical Paper

Comparison of the Lift-Off Lengths Obtained by Simultaneous OH-LIF and OH* Chemiluminescence Imaging in an Optical Heavy-Duty Diesel Engine

2015-09-06
2015-24-2418
The presence of OH radicals as a marker of the high temperature reaction region usually has been used to determine the lift-off length (LOL) in diesel engines. Both OH Laser Induced Fluorescence (LIF) and OH* chemiluminescence diagnostics have been widely used in optical engines for measuring the LOL. OH* chemiluminescence is radiation from OH being formed in the exited states (OH*). As a consequence OH* chemiluminescence imaging provides line-of-sight information across the imaged volume. In contrast, OH-LIF provides information on the distribution of radicals present in the energy ground state. The OH-LIF images only show OH distribution in the thin cross-section illuminated by the laser. When both these techniques have been applied in earlier work, it has often been reported that the chemiluminescence measurements result in shorter lift-off lengths than the LIF approach.
Technical Paper

Cycle Resolved Wall Temperature Measurements Using Laser-Induced Phosphorescence in an HCCI Engine

2005-10-24
2005-01-3870
Cycle resolved wall temperature measurements have been performed in a one cylinder port injected optical Scania D12 truck engine run in HCCI mode. Point measurements at various locations were made using Laser-Induced Phosphorescence (LIP). Single point measurements with thermographic phosphors utilize the temperature dependancy of the phosphorescence decay time. The phosphorescence peak at 538 nm from the thermographic phosphor La2O2S:Eu was used to determine temperature. A frequency tripled 10 Hz pulsed Nd:YAG laser delivering ultra violet (UV) radiation at 355 nm was used for excitation of the phosphor. Detection in the spectral region 535 - 545 nm was performed every cycle with a photo multiplier tube connected to a 3 GHz oscilloscope. Measurements were made at four points on the cylinder head surface and two points on the outlet and inlet valves respectively. For each location measurements were made at different loads and at different crank angle degrees (CAD).
Technical Paper

DEVELOPMENT OF A LOW EMISSION VOLVO 9.6 LITER NATURAL GAS FUELED BUS ENGINE

1992-08-01
921554
A Volvo 9.6L diesel engine was converted to run on 100 percent compressed natural gas in order to demonstrate “significantly reduced exhaust emissions.” A descendent of the natural gas 9.6L engine developed on this project is being used in bus applications in Göteborg, Sweden. At the time this paper was written, Volvo had manufactured two out of 20 gas buses for the city of Goteborg. A lean-burn, stratified-charge combustion system was originally chosen for this project which included a precombustion chamber (prechamber) located in the cylinder head. The prechamber was used to replace the original diesel fuel injector and was fitted with its own fuel supply and spark plug. A near stoichiometric air/fuel mixture was produced in the prechamber and ignited by the spark plug. As combustion progressed in the prechamber, a violent jet was produced that ignited a lean mixture in the main combustion chamber.
Technical Paper

Detailed Heat Release Analyses with Regard to Combustion of RME and Oxygenated Fuels in an HSDI Diesel Engine

2007-04-16
2007-01-0627
Experiments on a modern DI Diesel engine were carried out: The engine was fuelled with standard Diesel fuel, RME and a mixture of 85% standard Diesel fuel, 5% RME and 10% higher alcohols under low load conditions (4 bar IMEP). During these experiments, different external EGR levels were applied while the injection timing was chosen in a way to keep the location of 50% heat release constant. Emission analysis results were in accordance with widely known correlations: Increasing EGR rates lowered NOx emissions. This is explained by a decrease of global air-fuel ratio entailing longer ignition delay. Local gas-fuel ratio increases during ignition delay and local combustion temperature is lowered. Exhaust gas analysis indicated further a strong increase of CO, PM and unburned HC emissions at high EGR levels. This resulted in lower combustion efficiency. PM emissions however, decreased above 50% EGR which was also in accordance with previously reported results.
Journal Article

Effect of Injection Strategy on Cold Start Performance in an Optical Light-Duty DI Diesel Engine

2009-09-13
2009-24-0045
The present study investigates cold start at very low temperatures, down to −29 deg C. The experiments were conducted in an optical light duty diesel engine using a Swedish class 1 environmental diesel fuel. In-cylinder imaging of the natural luminescence using a high speed video camera was performed to get a better understanding of the combustion at very low temperature conditions. Combustion in cold starting conditions was found to be asymmetrically distributed in the combustion chamber. Combustion was initiated close to the glow plug first and then transported in the swirl direction to the adjacent jets. A full factorial study was performed on low temperature sensitivity for cold start. The effects of cooling down the engine by parts on stability and noise were studied. Furthermore, different injection strategies were investigated in order to overcome the limited fuel evaporation process at very low temperatures.
X