Refine Your Search

Topic

Search Results

Technical Paper

A Study of Combustion Inefficiencies in SI Engines Powered by Alcohol and Ether Fuels Using Detailed Emission Speciation

2022-03-29
2022-01-0520
Advanced combustion engines, as power sources, dominate all aspects of the transportation sector. Stringent emission and fuel efficiency standards have promoted the research interest in advanced combustion strategies and alternative fuels. Owing to the comparable energy density to the existing fossil fuels and renewable production, alcohol and ether fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. Furthermore, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. However, lean-burn or EGR dilution can introduce combustion inefficiencies in the form of excessive hydrocarbon, carbonyl species and carbon monoxide emissions.
Journal Article

An Empirical Study to Extend Engine Load in Diesel Low Temperature Combustion

2011-08-30
2011-01-1814
In this work, engine tests were performed to realize EGR-enabled LTC on a single-cylinder common-rail diesel engine with three different compression ratios (17.5, 15 and 13:1). The engine performance was first investigated at 17.5:1 compression ratio to provide baseline results, against which all further testing was referenced. The intake boost and injection pressure were progressively increased to ascertain the limiting load conditions for the compression ratio. To extend the engine load range, the compression ratio was then lowered and EGR sweep tests were again carried out. The strength and homogeneity of the cylinder charge were enhanced by using intake boost up to 3 bar absolute and injection pressure up to 180 MPa. The combustion phasing was locked in a narrow crank angle window (5~10° ATDC), during all the tests.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

2009-04-20
2009-01-0730
Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Journal Article

An Improvement on Low Temperature Combustion in Neat Biodiesel Engine Cycles

2008-06-23
2008-01-1670
Extensive empirical work indicates that the exhaust emission and fuel efficiency of modern common-rail diesel engines characterise strong resilience to biodiesel fuels when the engines are operating in conventional high temperature combustion cycles. However, as the engine cycles approach the low temperature combustion (LTC) mode, which could be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion, the engine performance start to differ between the use of conventional and biodiesel fuels. Therefore, a set of fuel injection strategies were compared empirically under independently controlled EGR, intake boost, and exhaust backpressure in order to improve the neat biodiesel engine cycles.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

Boundary Layer Enhanced Thermal Recuperation for Diesel Particulate Filter Regeneration under a Periodic Flow Reversal Operation

2005-04-11
2005-01-0951
Diesel Particulate Filters (DPF) are viable to reduce smoke from diesel engines. An oxidation process is usually required to remove the Particulate Matter (PM) loading from the DPF substrates. In cases when the engine exhaust temperature is insufficient to initiate a thermal regeneration, supplemental energy is commonly applied to raise the exhaust gas and/or the DPF substrate temperatures. A flow reversal (FR) mechanism that traps a high temperature region in the DPF substrate by periodically altering the gas flow directions has been identified to be capable of reducing the supplemental energy and thus to improve the overall thermal efficiency of the engine. However, extended operations with low exhaust temperature lowers the DPF boundary temperatures that defers the regeneration processes. Furthermore, the temperature fluctuations caused by the periodic FR operation also increase the thermal stress in the DPF.
Technical Paper

Characterization of an Integrated Three-Way Catalyst/Lean NOx Trap System for Lean Burn SI Engines

2023-10-31
2023-01-1658
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Effect of Spark Discharge Duration and Timing on the Combustion Initiation in a Lean Burn SI Engine

2021-04-06
2021-01-0478
Meeting the increasingly stringent emission and fuel efficiency standards is the primary objective of the modern automotive research. Lean/diluted combustion is a promising avenue to realize high-efficiency combustion and reduce emissions in SI engines. Under diluted conditions, the flame propagation speed is reduced because of the reduced charge reactivity. Enhancing in-cylinder charge motion and turbulence, and thereby increasing the flame speed, is a possible way to harness the combustion process in SI engines. However, charge motion can have a significant effect on the spark ignition process because of the reduced discharge duration and frequent restrikes. A longer discharge duration can aid in the formation of a self-sustained flame kernel and subsequent stable ignition. Therefore, an empirical study is undertaken to investigate the effect of discharge duration and ignition timing on the ignition and early combustion in a port fueled SI engine, operated under lean conditions.
Journal Article

Efficacy of EGR and Boost in Single-Injection Enabled Low Temperature Combustion

2009-04-20
2009-01-1126
Exhaust gas recirculation, fuel injection strategy and boost pressure are among the key enablers to attain low NOx and soot emissions simultaneously on modern diesel engines. In this work, the individual influence of these parameters on the emissions are investigated independently for engine loads up to 8 bar IMEP. A single-shot fuel injection strategy has been deployed to push the diesel cycle into low temperature combustion with EGR. The results indicated that NOx was a stronger respondent to injection pressure levels than to boost when the EGR ratio is relatively low. However, when the EGR level was sufficiently high, the NOx was virtually grounded and the effect of boost or injection pressure becomes irrelevant. Further tests indicated that a higher injection pressure lowered soot emissions across the EGR sweeps while the effect of boost on the soot reduction appeared significant only at higher soot levels.
Journal Article

Efficiency & Stability Improvements of Diesel Low Temperature Combustion through Tightened Intake Oxygen Control

2010-04-12
2010-01-1118
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. Small variations in the intake charge dilution can significantly increase the unburnt hydrocarbon and carbon monoxide emissions as well as escalate the consecutive cyclic fluctuations of the cylinder charge. This in turn adversely affects the robustness and efficiency of the LTC operation. However, Improvements in the promptness and accuracy of combustion control as well as tightened control on the intake oxygen concentration can enhance the robustness and efficiency of the LTC operation in diesel engines. In this work, a set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations on a cycle-by-cycle basis.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
Technical Paper

Exhaust Hydrocarbon Speciation from a Single-Cylinder Compression Ignition Engine Operating with In-Cylinder Blending of Gasoline and Diesel Fuels

2012-04-16
2012-01-0683
Diesel aided by gasoline low temperature combustion offers low NOx and low soot emissions, and further provides the potential to expand engine load range and improve engine efficiency. The diesel-gasoline operation however yields high unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions. This study aims to correlate the chemical origins of the key hydrocarbon species detected in the engine exhaust under diesel-gasoline operation. It further aims to help develop strategies to lower the hydrocarbon emissions while retaining the low NOx, low soot, and efficiency benefits. A single-cylinder research engine was used to conduct the engine experiments at a constant engine load of 10 bar nIMEP with a fixed engine speed of 1600 rpm. Engine exhaust was sampled with a FTIR analyzer for speciation investigation.
Journal Article

Experimental Investigation of Diesel-Ethanol Premixed Pilot-Assisted Combustion (PPAC) in a High Compression Ratio Engine

2016-04-05
2016-01-0781
In this work, empirical investigations of the diesel-ethanol Premixed Pilot-Assisted Combustion (PPAC) are carried out on a high compression ratio (18.2:1) single-cylinder diesel engine. The tests focus on determining the minimum ethanol fraction for ultra-low NOx & soot emissions, effect of single-pilot vs. twin-pilot strategies on emissions and ignition controllability, reducing the EGR requirements, enabling clean combustion across the load range and achieving high efficiency full-load operation. The results show that both low NOx and almost zero soot emissions can be achieved but at the expense of higher unburned hydrocarbons. Compared to a single-pilot injection, a twin-pilot strategy reduces the soot emissions significantly and also lowers the NOx emissions, thereby reducing the requirements for EGR. The near-TDC pilot provides excellent control over the combustion phasing, further reducing the need of a higher EGR quantity for phasing control.
Technical Paper

Fuel Efficiency Improvements of Low Temperature Combustion Diesel Engines

2008-04-14
2008-01-0841
Previous work indicated that low temperature combustion (LTC) in diesel engines was capable of reducing nitrogen oxides and soot simultaneously, when implemented with highly premixed lean cylinder charge or by the use of high exhaust gas recirculation. However, the fuel efficiency of the low temperature combustion cycles was commonly compromised by the high levels of hydrocarbon and carbon monoxide emissions. Additionally, in cases of diesel homogeneous charge cycles, the combustion process may even occur before the piston completes the compression stroke, which may cause excessive efficiency reduction and combustion roughness. Empirical procedures were implemented to better phase and complete the combustion process. The impact of heat release phasing, duration, shaping, and splitting on the thermal efficiency has also been analyzed with zero-dimensional engine cycle simulations. This paper intends to identify the pathways to improve the fuel efficiency of diesel LTC cycles.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

2008-10-06
2008-01-2472
Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Journal Article

Heat Release Pattern Diagnostics to Improve Diesel Low Temperature Combustion

2008-06-23
2008-01-1726
Empirical results indicated that the engine emission and fuel efficiency of low-temperature combustion (LTC) cycles can be optimized by adjusting the fuel-injection scheduling in order to obtain appropriate combustion energy release or heat-release rate patterns. Based on these empirical results the heat-release characteristics were correlated with the regulated emissions such as soot, hydrocarbon and oxides of nitrogen. The transition from conventional combustion to LTC with the desired set of heat-release rate has been implemented. This transition was facilitated with the simplified heat-release characterization wherein each of the consecutive engine cycles was analyzed with a real-time controller embedded with an FPGA (field programmable gate array) device. The analyzed results served as the primary feedback control signals to adjust fuel injection scheduling. The experimental efforts included the boost/backpressure, exhaust gas recirculation, and load transients in the LTC region.
Technical Paper

Ignition Improvement of Premixed Methane-Air Mixtures by Distributed Spark Discharge

2015-09-01
2015-01-1889
In order to improve the fuel economy for future high-efficiency spark ignition engines, the use of advanced combustion strategies with an overall lean and/or exhaust gas recirculation diluted cylinder charge is deemed to be beneficial, provided a reliable ignition process available. In this paper, experimental results of igniting methane-air mixture by means of capacitive coupled ignition and multi-coil distributed spark ignition are presented. It is found that with a conventional spark plug electrode configuration, increase of spark energy does not proportionally enhance the ignition flame kernel development. The use of capacitive coupled ignition to enhance the initial transient power resulted in faster kernel growth compared to the conventional system. The distribution of the spark energy across a number of spark gaps shows considerable benefit.
Journal Article

Impact of Fuel Properties on Diesel Low Temperature Combustion

2011-04-12
2011-01-0329
Extensive empirical work indicates that exhaust gas recirculation (EGR) is effective to lower the flame temperature and thus the oxides of nitrogen (NOx) production in-cylinder in diesel engines. Soot emissions are reduced in-cylinder by improved fuel/air mixing. As engine load increases, higher levels of intake boost and fuel injection pressure are required to suppress soot production. The high EGR and improved fuel/air mixing is then critical to enable low temperature combustion (LTC) processes. The paper explores the properties of the Fuels for Advanced Combustion Engines (FACE) Diesel, which are statistically designed to examine fuel effects, on a 0.75L single cylinder engine across the full range of load, spanning up to 15 bar IMEP. The lower cetane number (CN) of the diesel fuel improved the mixing process by prolonging the ignition delay and the mixing duration leading to substantial reduction of soot at low to medium loads, improving the trade-off between NOx and soot.
Technical Paper

Improvement on Energy Efficiency of the Spark Ignition System

2017-03-28
2017-01-0678
Future clean combustion engines tend to increase the cylinder charge to achieve better fuel economy and lower exhaust emissions. The increase of the cylinder charge is often associated with either excessive air admission or exhaust gas recirculation, which leads to unfavorable ignition conditions at the ignition point. Advanced ignition methods and systems have progressed rapidly in recent years in order to suffice the current and future engine development, and a simple increase of energy of the inductive ignition system does not often provide the desired results from a cost-benefit point of view. Proper design of the ignition system circuit is required to achieve certain spark performances.
Technical Paper

Investigation of Dimethyl Ether Dual-Fuel Combustion Using Propane and Ethanol as Premixed Fuel

2023-09-29
2023-32-0018
The combustion and emission characteristics of dual-fuel combustion were investigated using dimethyl ether direct injection and premixed low-carbon fuels. Dimethyl ether was used as the direct injection fuel for its high reactivity and low propensity to form particulate matter. Ethanol and Propane, two fuels of low reactivity, were premixed in the intake port. An injection timing sweep of varying premixed energy shares and engine loads was tested. Combustion analysis was conducted based on in-cylinder pressure measurements while detailed speciation of engine-out emissions was performed via FTIR. The proper injection advance and premixed energy share can realize low NOx and high combustion efficiency. Ethanol showed stronger impact to DME ignition delay as compared with propane.
X