Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

100 Years of Corrosion Testing—Is It Time to Move beyond the ASTM D130? The Wire Corrosion and Conductive Deposit Tests

2023-09-22
Abstract The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century.
Technical Paper

1500 Hp Diesel Electric Tractor

1976-02-01
760647
The experience accumulated with a prototype 1000 HP diesel electric tractor since 1969 is described. The new 1500 HP V220 diesel electric tractors are described along with some of the initial operation of these two units. Experience with the initial 1000 HP unit and the two 1500 HP tractors confirm the necessity of additional testing and experimentation to refine the design to get greater productivity with reduced operator fatigue. The unpredictability of the load and operating surface are major problems that present a real challenge to the engineer.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

2004 Nissan 3.5L Cam Cover Material Study: Aluminum, Magnesium and Composite

2005-04-11
2005-01-0727
The present study compares the NVH performance of three different materials used on cam covers in automobiles, Aluminum (Al), Magnesium (Mg) and Thermoplastic (TP). The cam cover design used for this comparison was the 2004 Nissan Maxima 3.5L production cam cover which is made of a thermoplastic (TP). The Al and Mg covers for this study were created by sandcast, due to time constraints, via laser scanning techniques using the 2004 Nissan Maxima 3.5L production thermoplastic cover design. Note that sand-cast covers generally provide a less quiet sound field than the standard casting method. The Nissan production cover comes with a production baffle made of a similar material as the cover. Testing was conducted with and without the production baffle for all covers. The study was conducted for the production boundary condition of a non-isolated cover and a Freudenberg-NOK (FNGP) partially isolated cover. Isolated bolt assemblies using elastomeric grommets were used to isolate the cover.
Technical Paper

2005 Ford GT Magnesium I/P Structure

2004-03-08
2004-01-1261
This paper describes a new concept for a Ford GT instrument panel (IP) based on structural magnesium components, which resulted in what may be the industry's first structural IP (primary load path). Two US-patent applications are ongoing. Design criteria included cost, corrosion protection, crashworthiness assessments, noise vibration harshness (NVH) performance, and durability. Die casting requirements included feasibility for production, coating strategy and assembly constraints. The magnesium die-cast crosscar beam, radio box and console top help meet the vehicle weight target. The casting components use an AM60 alloy that has the necessary elongation properties required for crashworthiness. The resulting IP design has many unique features and the flexibility present in die-casting that would not be possible using conventional steel stampings and assembly techniques.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

21 Cubic Yard 580 PAY® Loader

1975-02-01
750817
To effectively utilize larger trucks (85 ton and up), open-pit mines and quarries need a larger front-end loader with high reliability and performance. This paper describes the design approach and tests carried out to design 21 cubic yard 580 PAY® loader to meet these requirements. Long fatigue life of structures was obtained by use of full penetration welds. New concept for power control was designed to effectively distribute power between hydraulics and drive train. Spring applied - pressure released brakes were designed into the axle. Tests were carried out in our laboratory and proving grounds to determine performance and reliability.
Technical Paper

22M-0156, Loading Classification for Fatigue Design Applied to Automotive Time-Series

2022-03-29
2022-01-0254
This study focuses on variable amplitude loadings applied to automotive chassis parts experiencing carmaker’s specific proving grounds. They are measured with respect to time at the wheel centres and composed of the six forces and torques at each wheel, within the standard vehicle reference frame. In the scope of high cycle fatigue, the loadings considered are supposedly acting under the structure yield stress. Among the loadings encountered during the vehicle lifetime, two classes stand out: Driven Road: loads measured during the vehicle manoeuvre; Random Road: loads mainly coming from the road asperity. To separate both effects, a frequency decomposition method is proposed before applying any lifetime assessment methods. The usual Rainflow counting method is applied to the Driven Road signal. These loadings, depending on the vehicle dynamics, are time-correlated. Thus, the load spectra is set only thanks to the vehicle accelerations time-measurement.
Technical Paper

3D Engine Analysis and MLS Cylinder Head Gaskets Design

2002-03-04
2002-01-0663
Multi-layer steel (MLS) cylinder head gaskets are becoming more widely used to seal an engine. Therefore, it is important to understand the interaction between the engine head, block and head gasket. While experimental methods for determining necessary gasket tightening loads and experimental data relating some gasket design parameters to failure are available, it is very costly and time consuming. A numerical method, such as the finite element (FE) method, has proven to be very useful and efficient in aiding gasket design. A 3D engine FE analysis can predict a number of parameters. Of particular interest are the motion as well as the contact profile of the head, block and gasket. This information, usually difficult or impossible to obtain from a 2D FE analysis, can be used to predict the two most common failure modes of a gasket, fatigue crack and leakage.
Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980545
A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

A 3.4 kW, 42 V High Efficiency Automotive Power Generation System

2000-08-21
2000-01-3064
A 3.4 kW, 42 V permanent magnet alternator based high power generation system was built and tested in the Delphi R&D laboratory. It is belt driven system with 3.37: 1 pulley ratio. The size of the alternator is slightly less than the production CS-144 Lundell machine with 1/3 less inertia. For cost reasons, the controller uses a single SCR bridge rectifier. The prototype, which is capable of producing 34A/80A at idle/cruising speed, has been tested in the laboratory yielding 84.5%/70.7% efficiencies. Up to cruising speed, the system shows an improvement in full load efficiencies of 5-6 percentile points over a similar 14 V permanent magnet machine with dual SCR bridge. This efficiency improvement is due to the reduction in the converter losses as the current is reduced to one third of its 14 V values even with the same copper losses in both machines.
Technical Paper

A Billion Engine Hours On Aluminum Bearings

1956-01-01
560058
HIGH load-carrying ability and fatigue strength, good embeddabiltty and conformability, and resistance to wear, seizure, and corrosion are factors that sold them on aluminum for bearings, the authors report. Bonded steel backing, they say, makes aluminum bearings even better. Retaining aluminum's good properties, it improves some of its bad points and gives such advantages as: Reduced bearing clearances, compared with those used with solid-aluminum bearings. No life limit in operation below 5000 psi fatigue stress value. Less sensitivity to high oil temperatures. Negligible wear (after 29,000 hr in one test). Simpler and less expensive bearing-locating designs. Special excellence for high-load, high-speed applications.
Technical Paper

A Case Study of a Die-Cast Magnesium Structure Supporting Transmission Shifter Mechanisms and Interfaced with other Structural Systems

2004-03-08
2004-01-0130
During the last several years the use of magnesium die-castings for automotive applications has been on the rise. Magnesium's use in die-cast form has been expanding at an average growth rate of more than 15% a year. Reasons for the increase are both practical and economic. Magnesium die-castings offer components having the lowest mass when compared to almost any other structural material. Magnesium die-alloys exhibit properties that bridge the gap between engineered plastics and metals. The mechanical performance ratios (strength-to-weight and stiffness-to-weight) of magnesium also compete favorably with metals and plastics. Economically, magnesium alloys prices have fallen during the last several years making them extremely competitive with other materials.
Technical Paper

A Case Study on Effect of Subsequent Operations on Shot Peened Crown Wheel Pinion (Hypoid Gear Set) & Compressive Residual Stress Analysis

2021-09-22
2021-26-0252
The prime function of crown wheel pinion is to receive the power from transmission & distribute to two-wheel ends. Doing so these members will experience the tremendous bending fatigue. Shot peen is the one of the latest technology used to improve the bending fatigue of the CWP [1]. In this particular case- six CWP are taken for the study to understand the effect of the operations after shot peen process. Three Samples are named as batch A, another 3 samples are named as batch B. Both the batch CWP are shot peened. Then as a regular production practice the batch A CWP are process through hard turning ➔ Abrasive lapping ➔ Hot lubriting (manganese phosphate) ➔ Fully finish ready for assembly. Then both the batch A & batch B samples are taken for residual stress analysis using X-Ray diffraction technique. The measurement location is 50 microns below the surface. The results tabulated, found that batch A samples shows decrease in Residual stress relatively to batch B.
Technical Paper

A Combined Mode Fatigue Model for Glass Reinforced Nylon as applied to Molded Engine Cooling Fans

1985-02-01
850522
The use of glass reinforced nylon in fatigue inducing environments calls for a new method of stress analysis. With an engine cooling fan, both mean and vibratory stresses need to be examined. Speed cycling can cause tensile fatigue, while vibration can cause flexural fatigue. Since tensile and flexural stresses exist in the fan simultaneously, a combined mode fatigue model is needed. The proposed model is based on high cycle flexural and tensile fatigue strengths, and tensile strength. It relates measurable strain to stress using temperature dependent flexural and tensile moduli, and treats underhood temperature and desired product life as variables.
Technical Paper

A Compact High Intensity Cooler (CHIC)

1983-07-11
831127
A unique heat exchanger has been developed with potential applications for cooling high power density electronics and perhaps high energy laser mirrors. The device was designed to absorb heat fluxes of approximately 50 w/cm2 (158,000 Btu/hr.ft2) with a low thermal resistance, a high surface temperature uniformity and very low hydraulic pumping power. A stack of thin copper orifice plates and spacers was bonded together and arranged to provide liquid jet impingement heat transfer on successive plates. This configuration resulted in effective heat transfer coefficients, based on the prime surface, of about 85,000 w/m2 °C (15,000 Btu/hr.ft2 °F) and 1.8 watts (.002 HP) hydraulic power with liquid Freon 11 as coolant.
Technical Paper

A Comparative Analysis of Air-inflated and Foam Seat Cushions for Truck Seats

2002-11-18
2002-01-3108
A comprehensive comparison between an air-inflated seat cushion designed for truck seats and a commonly used foam cushion is provided, using a single-axis test rig designed for seat dynamic testing. Different types of tests were conducted in order to evaluate various aspects of each type of cushion; in terms of their response to narrowband (single frequency) dynamics, broadband input of the type that is commonly used in the trucking industry for testing seats, and a step input for assessing the damping characteristics of each cushion. The tests were conducted over a twelve-hour period—in four-hour intervals—measuring the changes that occur at the seat cushion over time and assessing how these changes can affect the metrics that are used for evaluating the cushions. The tests indicated a greater stiffening of the foam cushion over time, as compared with the air-inflated cushion that showed almost no change in stiffness when exposed to a static weight for twelve hours.
Technical Paper

A Comparative Design Study for Aluminium and Magnesium Automatic Transmission Converter Housings

2001-10-01
2001-01-3173
The demand for vehicles with improved NVH characteristics, fuel economy and emissions control has increased dramatically in recent years. To meet these objectives stiffer and lighter housings are required so as to avoid troublesome driveline vibrations, while at the same time produce lighter structures to reduce the overall vehicle weight and improved fuel economy. A feasibility study was undertaken to examine the differences between the use of magnesium alloy and aluminium alloy for an automatic transmission converter housing. The design process, design constraints, design methodology, alloy selection and some unique magnesium design requirements are outlined. The differences between the two designs are investigated by simulating their static and dynamic performances using Finite Element Analysis (FEA). A sand cast prototype was produced for the first stage of the feasibility study, with the ultimate aim to produce die cast magnesium converter housings if feasible.
Technical Paper

A Comparative Evaluation of Mechanical Properties and Machinability of Austempered Ductile Iron (ADI) and Microalloyed Steel

1991-02-01
910141
Austempered Ductile Iron (ADI) samples were heat treated to produce materials with tensile strengths in the range of 100 ksi to 170 ksi. Microalloyed steels were also produced with equivalent tensile and yield strength levels. These steels were evaluated for mechanical properties in terms of tensile and yield strength, ductility, impact toughness, fracture toughness and fatigue strength. Machinability was extensively evaluated through tests of drilling, turning and plunge machining. This paper reports on this comprehensive comparative evaluation of these two important classes of materials for use in the automotive industry.
Technical Paper

A Comparative Investigation on the High Temperature Fatigue of Three Cast Aluminum Alloys

2004-03-08
2004-01-1029
The high temperature fatigue behaviors of three cast aluminum alloys used for cylinder head fabrication - 319, A356 and AS7GU - are compared under isothermal fatigue at room temperature and elevated temperatures. The thermo-mechanical fatigue behavior for both out-of-phase and in-phase loading conditions (100-300°C) has also been investigated. It has been observed that all three of these alloys present a very similar behavior under both isothermal and thermo-mechanical low-cycle fatigue. Under high-cycle fatigue, however, the alloys A356 and AS7GU exhibit superior performance.
X