Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

14 Degree-of-Freedom Vehicle Model for Roll Dynamics Study

2006-04-03
2006-01-1277
A vehicle model is an important factor in the development of vehicle control systems. Various vehicle models having different complexities, assumptions, and limitations have been developed and applied to many different vehicle control systems. A 14 DOF vehicle model that includes a roll center as well as non-linear effects due to vehicle roll and pitch angles and unsprung mass inertias, is developed. From this model, the limitations and validity of lower order models which employ different assumptions for simplification of dynamic equations are investigated by analyzing their effect on vehicle roll response through simulation. The possible limitation of the 14 DOF model compared to an actual vehicle is also discussed.
Technical Paper

1500 Hp Diesel Electric Tractor

1976-02-01
760647
The experience accumulated with a prototype 1000 HP diesel electric tractor since 1969 is described. The new 1500 HP V220 diesel electric tractors are described along with some of the initial operation of these two units. Experience with the initial 1000 HP unit and the two 1500 HP tractors confirm the necessity of additional testing and experimentation to refine the design to get greater productivity with reduced operator fatigue. The unpredictability of the load and operating surface are major problems that present a real challenge to the engineer.
Technical Paper

2004 Nissan 3.5L Cam Cover Material Study: Aluminum, Magnesium and Composite

2005-04-11
2005-01-0727
The present study compares the NVH performance of three different materials used on cam covers in automobiles, Aluminum (Al), Magnesium (Mg) and Thermoplastic (TP). The cam cover design used for this comparison was the 2004 Nissan Maxima 3.5L production cam cover which is made of a thermoplastic (TP). The Al and Mg covers for this study were created by sandcast, due to time constraints, via laser scanning techniques using the 2004 Nissan Maxima 3.5L production thermoplastic cover design. Note that sand-cast covers generally provide a less quiet sound field than the standard casting method. The Nissan production cover comes with a production baffle made of a similar material as the cover. Testing was conducted with and without the production baffle for all covers. The study was conducted for the production boundary condition of a non-isolated cover and a Freudenberg-NOK (FNGP) partially isolated cover. Isolated bolt assemblies using elastomeric grommets were used to isolate the cover.
Technical Paper

2005 Ford GT Magnesium I/P Structure

2004-03-08
2004-01-1261
This paper describes a new concept for a Ford GT instrument panel (IP) based on structural magnesium components, which resulted in what may be the industry's first structural IP (primary load path). Two US-patent applications are ongoing. Design criteria included cost, corrosion protection, crashworthiness assessments, noise vibration harshness (NVH) performance, and durability. Die casting requirements included feasibility for production, coating strategy and assembly constraints. The magnesium die-cast crosscar beam, radio box and console top help meet the vehicle weight target. The casting components use an AM60 alloy that has the necessary elongation properties required for crashworthiness. The resulting IP design has many unique features and the flexibility present in die-casting that would not be possible using conventional steel stampings and assembly techniques.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

21 Cubic Yard 580 PAY® Loader

1975-02-01
750817
To effectively utilize larger trucks (85 ton and up), open-pit mines and quarries need a larger front-end loader with high reliability and performance. This paper describes the design approach and tests carried out to design 21 cubic yard 580 PAY® loader to meet these requirements. Long fatigue life of structures was obtained by use of full penetration welds. New concept for power control was designed to effectively distribute power between hydraulics and drive train. Spring applied - pressure released brakes were designed into the axle. Tests were carried out in our laboratory and proving grounds to determine performance and reliability.
Technical Paper

22M-0156, Loading Classification for Fatigue Design Applied to Automotive Time-Series

2022-03-29
2022-01-0254
This study focuses on variable amplitude loadings applied to automotive chassis parts experiencing carmaker’s specific proving grounds. They are measured with respect to time at the wheel centres and composed of the six forces and torques at each wheel, within the standard vehicle reference frame. In the scope of high cycle fatigue, the loadings considered are supposedly acting under the structure yield stress. Among the loadings encountered during the vehicle lifetime, two classes stand out: Driven Road: loads measured during the vehicle manoeuvre; Random Road: loads mainly coming from the road asperity. To separate both effects, a frequency decomposition method is proposed before applying any lifetime assessment methods. The usual Rainflow counting method is applied to the Driven Road signal. These loadings, depending on the vehicle dynamics, are time-correlated. Thus, the load spectra is set only thanks to the vehicle accelerations time-measurement.
Technical Paper

3D Engine Analysis and MLS Cylinder Head Gaskets Design

2002-03-04
2002-01-0663
Multi-layer steel (MLS) cylinder head gaskets are becoming more widely used to seal an engine. Therefore, it is important to understand the interaction between the engine head, block and head gasket. While experimental methods for determining necessary gasket tightening loads and experimental data relating some gasket design parameters to failure are available, it is very costly and time consuming. A numerical method, such as the finite element (FE) method, has proven to be very useful and efficient in aiding gasket design. A 3D engine FE analysis can predict a number of parameters. Of particular interest are the motion as well as the contact profile of the head, block and gasket. This information, usually difficult or impossible to obtain from a 2D FE analysis, can be used to predict the two most common failure modes of a gasket, fatigue crack and leakage.
Technical Paper

4-DOF Vehicle Ride Model

2002-05-07
2002-01-1580
Ride quality is one of the most important criteria by which people judge the design of a car. At the most basic level, ride isolation properties are investigated using a quarter vehicle model. But the input from road roughness would excite not only bounce motions, but also pitch motions. Understanding the pitch and bounce motions is essential because it is their combination that determines the vertical and longitudinal vibrations at any point on the vehicle [2]. In this paper, a 4-degree-of-freedom (4-DOF) Vehicle Ride Model, which is shown in Figure 1, is used to investigate the effect on the ride quality of the dynamic index in pitch, mass ratio, weight distribution and flat ride tuning. A Lagrange equation is used to derive the equations of motion. A state-space formulation is obtained by using state variables. From these, the characteristic equation, natural frequency and damping ratio are obtained.
Technical Paper

A 6 Sigma Framework for the Design of Flatfish Type Autonomous Underwater Vehicle (AUV)

2009-04-20
2009-01-1190
Hydrodynamic parameters play a major role in the dynamics and control of Autonomous Underwater Vehicles (AUV). The performance of an AUV is dependent on the parameter variations and a proper understanding of these parametric influences is essential for the design, modelling and control of high performance AUVs. In this paper, a six sigma framework for the sensitivity analysis of a flatfish type AUV is presented. Robust design techniques such as Taguchi’s design method and statistical analysis tools such as Pareto-ANOVA, and ANOVA are used to identify the hydrodynamic parameters influencing the dynamic performance of an AUV. In the initial study, it is found that when the vehicle commanded in forward direction, it is in bow down configuration which is unacceptable for AUV motion. This is because of the vehicle buoyancy and shape of the vehicle. So the sensitivity analysis of pitch angle variation is studied by using robust design techniques.
Technical Paper

A Billion Engine Hours On Aluminum Bearings

1956-01-01
560058
HIGH load-carrying ability and fatigue strength, good embeddabiltty and conformability, and resistance to wear, seizure, and corrosion are factors that sold them on aluminum for bearings, the authors report. Bonded steel backing, they say, makes aluminum bearings even better. Retaining aluminum's good properties, it improves some of its bad points and gives such advantages as: Reduced bearing clearances, compared with those used with solid-aluminum bearings. No life limit in operation below 5000 psi fatigue stress value. Less sensitivity to high oil temperatures. Negligible wear (after 29,000 hr in one test). Simpler and less expensive bearing-locating designs. Special excellence for high-load, high-speed applications.
Technical Paper

A Case Study of a Die-Cast Magnesium Structure Supporting Transmission Shifter Mechanisms and Interfaced with other Structural Systems

2004-03-08
2004-01-0130
During the last several years the use of magnesium die-castings for automotive applications has been on the rise. Magnesium's use in die-cast form has been expanding at an average growth rate of more than 15% a year. Reasons for the increase are both practical and economic. Magnesium die-castings offer components having the lowest mass when compared to almost any other structural material. Magnesium die-alloys exhibit properties that bridge the gap between engineered plastics and metals. The mechanical performance ratios (strength-to-weight and stiffness-to-weight) of magnesium also compete favorably with metals and plastics. Economically, magnesium alloys prices have fallen during the last several years making them extremely competitive with other materials.
Technical Paper

A Case Study on Effect of Subsequent Operations on Shot Peened Crown Wheel Pinion (Hypoid Gear Set) & Compressive Residual Stress Analysis

2021-09-22
2021-26-0252
The prime function of crown wheel pinion is to receive the power from transmission & distribute to two-wheel ends. Doing so these members will experience the tremendous bending fatigue. Shot peen is the one of the latest technology used to improve the bending fatigue of the CWP [1]. In this particular case- six CWP are taken for the study to understand the effect of the operations after shot peen process. Three Samples are named as batch A, another 3 samples are named as batch B. Both the batch CWP are shot peened. Then as a regular production practice the batch A CWP are process through hard turning ➔ Abrasive lapping ➔ Hot lubriting (manganese phosphate) ➔ Fully finish ready for assembly. Then both the batch A & batch B samples are taken for residual stress analysis using X-Ray diffraction technique. The measurement location is 50 microns below the surface. The results tabulated, found that batch A samples shows decrease in Residual stress relatively to batch B.
Technical Paper

A Combined Mode Fatigue Model for Glass Reinforced Nylon as applied to Molded Engine Cooling Fans

1985-02-01
850522
The use of glass reinforced nylon in fatigue inducing environments calls for a new method of stress analysis. With an engine cooling fan, both mean and vibratory stresses need to be examined. Speed cycling can cause tensile fatigue, while vibration can cause flexural fatigue. Since tensile and flexural stresses exist in the fan simultaneously, a combined mode fatigue model is needed. The proposed model is based on high cycle flexural and tensile fatigue strengths, and tensile strength. It relates measurable strain to stress using temperature dependent flexural and tensile moduli, and treats underhood temperature and desired product life as variables.
Technical Paper

A Comparative Analysis of Air-inflated and Foam Seat Cushions for Truck Seats

2002-11-18
2002-01-3108
A comprehensive comparison between an air-inflated seat cushion designed for truck seats and a commonly used foam cushion is provided, using a single-axis test rig designed for seat dynamic testing. Different types of tests were conducted in order to evaluate various aspects of each type of cushion; in terms of their response to narrowband (single frequency) dynamics, broadband input of the type that is commonly used in the trucking industry for testing seats, and a step input for assessing the damping characteristics of each cushion. The tests were conducted over a twelve-hour period—in four-hour intervals—measuring the changes that occur at the seat cushion over time and assessing how these changes can affect the metrics that are used for evaluating the cushions. The tests indicated a greater stiffening of the foam cushion over time, as compared with the air-inflated cushion that showed almost no change in stiffness when exposed to a static weight for twelve hours.
Technical Paper

A Comparative Design Study for Aluminium and Magnesium Automatic Transmission Converter Housings

2001-10-01
2001-01-3173
The demand for vehicles with improved NVH characteristics, fuel economy and emissions control has increased dramatically in recent years. To meet these objectives stiffer and lighter housings are required so as to avoid troublesome driveline vibrations, while at the same time produce lighter structures to reduce the overall vehicle weight and improved fuel economy. A feasibility study was undertaken to examine the differences between the use of magnesium alloy and aluminium alloy for an automatic transmission converter housing. The design process, design constraints, design methodology, alloy selection and some unique magnesium design requirements are outlined. The differences between the two designs are investigated by simulating their static and dynamic performances using Finite Element Analysis (FEA). A sand cast prototype was produced for the first stage of the feasibility study, with the ultimate aim to produce die cast magnesium converter housings if feasible.
Technical Paper

A Comparative Evaluation of Mechanical Properties and Machinability of Austempered Ductile Iron (ADI) and Microalloyed Steel

1991-02-01
910141
Austempered Ductile Iron (ADI) samples were heat treated to produce materials with tensile strengths in the range of 100 ksi to 170 ksi. Microalloyed steels were also produced with equivalent tensile and yield strength levels. These steels were evaluated for mechanical properties in terms of tensile and yield strength, ductility, impact toughness, fracture toughness and fatigue strength. Machinability was extensively evaluated through tests of drilling, turning and plunge machining. This paper reports on this comprehensive comparative evaluation of these two important classes of materials for use in the automotive industry.
Technical Paper

A Comparative Investigation on the High Temperature Fatigue of Three Cast Aluminum Alloys

2004-03-08
2004-01-1029
The high temperature fatigue behaviors of three cast aluminum alloys used for cylinder head fabrication - 319, A356 and AS7GU - are compared under isothermal fatigue at room temperature and elevated temperatures. The thermo-mechanical fatigue behavior for both out-of-phase and in-phase loading conditions (100-300°C) has also been investigated. It has been observed that all three of these alloys present a very similar behavior under both isothermal and thermo-mechanical low-cycle fatigue. Under high-cycle fatigue, however, the alloys A356 and AS7GU exhibit superior performance.
Technical Paper

A Comparative Life Cycle Assessment of Magnesium Front End Autoparts: A Revision to 2010-01-0275

2012-12-31
2012-01-2325
The Magnesium Front End Research and Development (MFERD) project under the sponsorship of Canada, China, and USA aims to develop key technologies and a knowledge base for increased use of magnesium in automobiles. The primary goal of this life cycle assessment (LCA) study is to compare the energy and potential environmental impacts of advanced magnesium based front end parts of a North American-built 2007 GM-Cadillac CTS using the current steel structure as a baseline. An aluminium front end is also considered as an alternate light structure scenario. A “cradle-to-grave” LCA is conducted by including primary material production, semi-fabrication production, autoparts manufacturing and assembly, transportation, use phase, and end-of-life processing of autoparts. This LCA study was done in compliance with international standards ISO 14040:2006 [1] and ISO 14044:2006 [2].
Technical Paper

A Comparative Study of Advanced Suspension Dampers for Vibration and Shock Isolation Performance of Road Vehicle

2006-04-03
2006-01-0484
Electro-Rheological (ER) and Magneto-Rheological (MR) fluid based advanced suspension dampers are emerging to be the next generation of suspension dampers for their attractive features and promising performance potential to overcome the limitations of existing dampers in market. This study compares the vibration and shock isolation performances of ER damper and MR damper with linear passive damper and two-stage asymmetric non-linear damper using a four degrees-of-freedom pitch plane ride model. The study reveals superior vibration and shock isolation performance of ER and MR dampers for sprung mass compared to linear passive and asymmetric non-linear dampers. At higher frequencies (above 10 Hz), these dampers transmit higher load to pavement compared to other two. The study suggests that asymmetricity should be included in the design of these dampers to achieve improved performance over the entire frequency range.
X