Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 10445
Technical Paper

<PP/SEBS> Compounds: Sealing an Easier Future for Automotive Designers and Specifiers

2002-07-09
2002-01-1997
There is a definite trend toward the increasing use of “Glass Encapsulation Technology” in the automotive industry. In this technology a glass object such as a window is placed within a mould and an elastomer is injected around the window giving a tight sealing system. A wide variety of materials are currently used as the sealing materials in either static or semi-static encapsulated glazing systems, including a wide range of “elastomers”. New thermoplastic elastomer compounds are being developed that are characterized by their consistent properties; including high melt-fluidity, very good surface appearance, sealing properties, and resistance to weathering. Compound performance is highly dependent on formulation variables as well as the chemistries of the base materials. KRATON® SEBS polymers1 are block copolymers of styrene and ethylene/butylene.
Journal Article

1-g Suit Port Concept Evaluator 2008 Test Results

2009-07-12
2009-01-2572
The Lunar Electric Rover (LER), which was formerly called the Small Pressurized Rover (SPR), is currently being carried as an integral part of the lunar surface architectures that are under consideration in the Constellation Program. One element of the LER is the suit port, which is the means by which crew members perform Extravehicular Activities (EVAs). Two suit port deliverables were produced in fiscal year 2008: a 1-g suit port concept evaluator for functional integrated testing with the LER 1-g concept vehicle and a functional and pressurizable Engineering Unit (EU). This paper focuses on the 1-g suit port concept evaluator test results from the Desert Research and Technology Studies (D-RATS) October 2008 testing at Black Point Lava Flow (BPLF), Arizona. The 1-g suit port concept evaluator was integrated with the 1-g LER cabin and chassis concepts.
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

1997 UTEP LPP-FI Propane Challenge Vehicle

1998-02-23
980490
As part of the 1997 Propane Vehicle Challenge, a team of twelve UTEP students converted a 1996 Dodge Grand Caravan with a 3.3 L V6 engine to dedicated Liquefied Petroleum Gas (LPG) operation according to the 1997 Propane Vehicle Challenge (PVC) competition rules (16). The 1997 UTEP team developed an LPG liquid phase port fuel injection (LPP-FI) system for the minivan. The UTEP design strategy combines simplicity and sound engineering practices with the effective use of heat resistant materials to maintain the LPG in the liquid phase at temperatures encountered in the fuel delivery system. The team identified two options for fuel storage with in-tank fuel pumps. The competition vehicle incorporates a five-manifold eight inch diameter Sleegers Engineering LPG tank fitted with a Walbro LPTS in-tank pump system, providing a calculated range of 310 city miles and 438 highway miles.
Technical Paper

2K Epoxy PU Contribution to Part Dimensional Quality Stability in OEM’s Process for Emergent Markets

2016-10-25
2016-36-0233
Challenges surrounding OEM′s go far beyond to manufacture and delivery high quality vehicles. A perfect design and performance in the lowest cost possible is extremely essential to delivery to the customer the best vehicles. In order to guarantee all these targets, a robust process must be set to developed and implemented. It is known all process limitations, which faces the emergent markets and the lack of infrastructure considering the developed countries. All this limitations can deeply affect the robustness of the process. Some innovative solutions are becoming common from the engineering development combined with the manufacturing team to work out these limitations and provide excellent process stability. In this present paper it will be discussed the Bi component structural adhesive (2K PU epoxy) utilization to establish the process in the assembly line, mainly in order to improve parts dimensionally.
Technical Paper

3D Engine Analysis and MLS Cylinder Head Gaskets Design

2002-03-04
2002-01-0663
Multi-layer steel (MLS) cylinder head gaskets are becoming more widely used to seal an engine. Therefore, it is important to understand the interaction between the engine head, block and head gasket. While experimental methods for determining necessary gasket tightening loads and experimental data relating some gasket design parameters to failure are available, it is very costly and time consuming. A numerical method, such as the finite element (FE) method, has proven to be very useful and efficient in aiding gasket design. A 3D engine FE analysis can predict a number of parameters. Of particular interest are the motion as well as the contact profile of the head, block and gasket. This information, usually difficult or impossible to obtain from a 2D FE analysis, can be used to predict the two most common failure modes of a gasket, fatigue crack and leakage.
Technical Paper

42 V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles

2001-08-20
2001-01-2500
Electrical Air Conditioning Systems for 42 V vehicles will provide many benefits in terms of Environment protection, car Architecture, cabin Comfort and overall Safety. E-A/C Systems essentially differ from conventional ones by the use of electrical compressors. First of all, they will be particularly well adapted to new powertrains, helping to make them more environmentally friendly. Accurate control and high efficiency under the most common thermal conditions will reduce the A/C impact on fuel consumption. Besides, higher sealing integrity will cut emissions of refrigerant during normal operation and maintenance. Secondly, the use of an electrically driven compressor (EDC) will suppress a belt, and will reduce the packaging constraints. This will help to design new vehicle architectures. Thirdly, the electrification of air conditioning will allow better thermal comfort. In particular, E-A/C Systems provide a good opportunity for cabin pre-conditioning.
Technical Paper

48 Development of Exhaust Valve Seat Insert Material for High Performance Engines

2002-10-29
2002-32-1817
Engines are assigned big subjects such as low emission and low fuel consumption as well as higher output (higher efficiency) in the latest trend of environmental protection. In order to meet these requirements, Air/Fuel ratio of recent high performance engines is being arranged leaner than that of conventional engines. As a result exhaust valve seat inserts used in these engines have problems of their wear resistance because of high exhaust gas temperature. By analyzing wear mechanism under the lean burn conditions, authors developed material for exhaust valve seat inserts which show superior wear resistance under high operating temperature. For the purpose to enhance heat resistance, authors added alloy steel powder for matrix powder and used hard particles which have good diffusion with matrix. The developed material does not include Ni and Co powders for cost saving and has superior machinability.
Technical Paper

5000 Hours Aging of THERBAN® (HNBR) Elastomers in an Aggressive Biodiesel Blend

2012-04-16
2012-01-0943
TERBAN® hydrogenated nitrile rubber (HNBR) is a specialty elastomer used in demanding engineering applications such as the automotive, heavy duty, and industrial markets. It has excellent combination of heat, oil and abrasion resistance in addition to its high mechanical strength, very good dynamic and sealing properties. This paper will present data on aging HNBR for five thousand hours in an aggressive and un-stabilized B30A biodiesel fuel blend (70% ULSD, 30% SME, and an aggressive additive package) and explore the effect of HNBR polymer properties and vulcanizate composition on the performance in such fuel blends.
Technical Paper

59 The Rotating Cylinder Valve 4-Stroke Engine A Practical Alternative

2002-10-29
2002-32-1828
The Rotating Cylinder Valve (RCV) Engine is a novel 4 cycle engine that is a practical alternative to conventional 2 and 4 stroke designs, in particular for small capacity single cylinder applications. It is primarily intended to address applications where emissions legislation is forcing manufacturers to abandon the traditional carburetted 2 stroke. It has particular benefits for the moped/light motorcycle market. The engine operates on a simple principle. The cylinder liner is rotated around the piston at half engine speed via a pair of bevel gears. A port in the side of this cylinder indexes with inlet and exhaust ports in the surrounding casing. This rotary valve serves the cylinder as the engine cycles through the conventional 4 stroke cycle. The main technical issue that has been addressed is the design of a practical rotary valve seal.
Technical Paper

8000 psi Hydraulic System Seals and Materials Test Program-A Progress Report

1985-10-01
851913
Flight control technology for 8000 psi has emerged almost simultaneously with new fire-resistant hydraulic fluids, such as MIL-H-83282 and CTFE. A proliferation of industry recommendations has resulted in a wide variety of mechanisms for solving associated actuator design problems, including tighter clearances, special seals, finishes, materials, and many others. As there are few common agreements on the issues, an extensive three-phase test program was undertaken to attempt to corroborate some of these approaches or suggest others that may be better or more cost effective.
Technical Paper

8000 psi Hydraulic System Seals and Materials Test Program-Final Report

1987-10-01
871895
An 8000 psi test program was conducted to resolve conflicts and issues surrounding the use of CTFE and MIL-H-83282 fluid with vented and unvented actuator rod seals. Each of the four possible combinations had unique problems and each responded to appropriate corrections including new backup rings designed to operate with standard clearances. It was concluded that all combinations were viable within certain limits. Advantages and disadvantages of each configuration were identified and specific recommendations made for both dynamic and static seals within the context of existing military specifications.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2004-03-18
HISTORICAL
AIR4002
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Standard

8000 psi Hydraulic Systems: Experience and Test Results

2012-11-15
CURRENT
AIR4002A
Shortly after World War II, as aircraft became more sophisticated and power-assist, flight-control functions became a requirement, hydraulic system operating pressures rose from the 1000 psi level to the 3000 psi level found on most aircraft today. Since then, 4000 psi systems have been developed for the U.S. Air Force XB-70 and B-1 bombers and a number of European aircraft including the tornado multirole combat aircraft and the Concorde supersonic transport. The V-22 Osprey incorporates a 5000 psi hydraulic system. The power levels of military aircraft hydraulic systems have continued to rise. This is primarily due to higher aerodynamic loading, combined with the increased hydraulic functions and operations of each new aircraft. At the same time, aircraft structures and wings have been getting smaller and thinner as mission requirements expand. Thus, internal physical space available for plumbing and components continues to decrease.
Technical Paper

A Catalyzed Hydrocarbon Trap Using Metal-impregnated Zeolite for SULEV systems

2003-03-03
2003-01-0815
A catalyzed hydrocarbon (HC) trap aiming at the super-ultra low emission vehicle (SULEV) regulation was developed using a metal-impregnated zeolite. To enhance the adsorption and to raise the desorption temperature for a wide range of HC species, the modification of zeolite with certain metals was needed and Ag was found to be the most promising. Using a Ag impregnated zeolite, a three way catalyst was prepared, and its HC purification ability for a model gas simulating cold-start HCs was studied. Its heat resistance was also examined. A vehicle test for a fresh catalyzed HC trap showed that the cold-start HC after the newly developed trap almost reached the SULEV regulation level.
Technical Paper

A Comparative Evaluation of Mechanical Seals for Automotive Air Conditioning Compressors

1982-02-01
820076
Tile influence of materials selected for sliding couples, and the effects of seal design on overall seal performance in automotive air conditioning compressors were evaluated experimentally. Various carbon materials were investigated and dense, fine grained carbons were shown to give better performance. SEM analysis of the carbon materials provided insight to explain observed differences in performance levels. Comparative tests between a friction drive seal and an o-ring, positively driven style of seal, showed that the friction drive seal provided better performance based on minimizing oil and freon leakage. Oil and refrigerant leakage curves as a function of running time are provided for both seals for 600 hour tests.
Technical Paper

A Comparative Evaluation of Square VS Round Cross-Section Circular Seals Using Stress Relaxation Data to Predict the Useful Life of a Seal

1979-02-01
790351
Nitrile, silicone and fluorocarbon polymers were evaluated in square and round cross-section rings using stress relaxation to determine retained sealing force under static conditions at elevated temperatures. Stress-relaxation data were combined with a stress-decay formulation to predict the life of the seals while examining the effect that squeeze, cross-sectional shape, and state of cure have on performance. Regardless of material used, square cross-section rings exert a greater sealing force than their round counterparts for a longer time period. This improvement in seal life is due to cross-sectional shape and state of cure.
Technical Paper

A Comparative Study Between Salt Bath and Plasma Nitrocarburizing Processes for Application in Piston Rods

2000-12-01
2000-01-3175
The quality of the nitrocarburized layer has a decisive influence in the service life of components with pistons that work together with polymeric seals, since it interferes in the abrasion and wear mechanisms of the involved materials. Thus it is necessary to select the most adequate process to apply in a given component aiming for a quality improvement and warranty costs reduction. The literature offers a great volume of information about the different nitriding processes, but there are few reports comparing them. In this paper the salt bath and plasma processes are discussed concerning the white layer metallography, roughness and the process effect on corrosion resistance of gas spring rods manufactured with SAE 1040 steel.
Technical Paper

A Comparative Study by Vehicle Testing of Copper Alloy and Gray Iron Brake Discs

1972-02-01
720930
Automotive friction materials are composites containing three kinds of components: an organic binder, fiber for reinforcement, and property modifiers. At low braking temperatures, the wear rate of the friction materials is controlled primarily by abrasive and adhesive mechanisms. At higher braking temperatures, the wear rate increases exponentially with increasing temperature due to thermal degradation of the binder and other components, and the exponential wear rate is frequently accompanied by brake fade. Thus, one method of reducing thermal wear and fade tendency is to lower the temperature at the rotor/friction material interface. Since the rate of heat transfer from the interface is mostly dependent upon the conductive and convective modes, a rotor of high thermal conductivity will have a significant advantage over a rotor of low conductivity, if the heat capacity remains the same.
Technical Paper

A Comparison of Various Polymers in Select Organic Acid Technology (Oat) Coolants

2000-03-06
2000-01-1095
With the introduction of Organic Acid Technology (OAT) coolants into the automobile and truck markets, it has become necessary to perform elastomer compatibility studies to insure that seal materials will withstand the new fluids. This paper will compare Silicone, EPDM, Hydrogenated Nitrile Rubber, and Fluoroelastomer rubber compound formulations in a conventional coolant and OAT coolants with varying additive packages, Benzoic Acid, 2-ethylhexanoic, 2 mono acids (proprietary), and a Hybrid (European) coolant. Standard bench tests, following ASTM D471 immersion, were used to conduct the evaluations. High temperature, 150°C, a standard specification test temperature, 125°C, and a typical operating vehicle temperature, 110°C was used to measure the effects of high temperature acceleration testing on the elastomers as well as the coolants.
X