Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 20197
Technical Paper

"Nickel electroformed" tools development through stereolithography (SLA) for sheet metal forming~An evaluation study

2000-06-12
2000-05-0272
Currently, advancements in Rapid Prototyping (RP) technologies have led to considerable amount of research activities and has been playing a major role in the area of tooling development for which Rapid Tooling (RT) term was coined. While rapid prototyping techniques are employed to make prototype tools, the basic idea of the rapid tooling is to produce prototype and zero series parts by using prototype tools so the parts truly represent the future production. This paper will present an evaluation of a RP and RT technique in developing tools (punch and dies) for sheet metal forming, which had been manufactured and tested. Both punch and die have been manufactured by combining Stereolithography (SL), RP technique, with nickel electroforming process. The stereolithography technique that had been utilized in developing models for the tools had been built with modeling pattern called Accurate Clear Epoxy Solid (ACES).
Technical Paper

1500 Hp Diesel Electric Tractor

1976-02-01
760647
The experience accumulated with a prototype 1000 HP diesel electric tractor since 1969 is described. The new 1500 HP V220 diesel electric tractors are described along with some of the initial operation of these two units. Experience with the initial 1000 HP unit and the two 1500 HP tractors confirm the necessity of additional testing and experimentation to refine the design to get greater productivity with reduced operator fatigue. The unpredictability of the load and operating surface are major problems that present a real challenge to the engineer.
Technical Paper

19-Color H2O Absorption Spectrometer Applied for Real-Time In-Cylinder Gas Thermometry in an HCCI Engine

2007-04-16
2007-01-0188
1 An all fiber-optic sensor has been developed to measure H2O mole fraction and gas temperature in an HCCI engine. This absorption-spectroscopy-based sensor utilizes a broad wavelength (1320 to 1380 nm) source (supercontinua generated by a microchip laser) and a series of fiber Bragg gratings (19 gratings centered on unique water absorption peaks) to track the formation and temperature of combustion water vapor. The spectral coverage of the system promises improved measurement accuracy over two-line diode-laser based systems. Meanwhile, the simplicity of the fiber Bragg grating chromatic dispersion approach significantly reduces the data reduction time and cost relative to previous supercontinuum-based sensors. The data provided by the system is expected to enhance studies of the chemical kinetics which govern HCCI ignition as well as HCCI modeling efforts.
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

1D Thermo-Fluid Dynamic Modelling of a S.I. Engine Exhaust System for the Prediction of Warm-Up and Emission Conversion during a NEDC Cycle

2005-09-11
2005-24-073
This work describes an experimental and numerical investigation of the thermal transient of i.c. engine exhaust systems. A prototype of exhaust system has been investigated during a NEDC cycle in two different configurations. Firstly an uncoated catalyst has been adopted to consider only the effect of the gas-wall heat transfer. The measurements have been repeated on the same exhaust system equipped with a coated catalyst to point out the contribution of the chemical reactions to the thermal transient of the system. The measured values have been compared to the predicted results carried out with a 1D thermo fluid dynamic code, developed in-house to account for the thermal transient of the system and the chemical reactions occurring in the catalyst.
Technical Paper

1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of S.I. Engines: Predictions and Experiments

2001-03-05
2001-01-0939
This paper describes some recent advances of the research work concerning the 1D fluid dynamic modeling of unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN developed in previous work has been further enhanced to enable the simulation of the catalyst. The main chemical reactions occurring in the wash-coat have been accounted in the model, considering the mass transfer between gas and solid phase. The oxidation of CO, C3H6, C3H8, H2 and reduction of NO, the steam-reforming reactions of C3H6, C3H8, the water-gas shift reaction of CO have been considered. Moreover, an oxygen-storage sub-model has been introduced, to account for the behavior of Cerium oxides. A detailed thermal model of the converter takes into account the heat released by the exothermic reactions as a source term in the heat transfer equations. The influence of the insulating mat is accounted.
Technical Paper

2004 Nissan 3.5L Cam Cover Material Study: Aluminum, Magnesium and Composite

2005-04-11
2005-01-0727
The present study compares the NVH performance of three different materials used on cam covers in automobiles, Aluminum (Al), Magnesium (Mg) and Thermoplastic (TP). The cam cover design used for this comparison was the 2004 Nissan Maxima 3.5L production cam cover which is made of a thermoplastic (TP). The Al and Mg covers for this study were created by sandcast, due to time constraints, via laser scanning techniques using the 2004 Nissan Maxima 3.5L production thermoplastic cover design. Note that sand-cast covers generally provide a less quiet sound field than the standard casting method. The Nissan production cover comes with a production baffle made of a similar material as the cover. Testing was conducted with and without the production baffle for all covers. The study was conducted for the production boundary condition of a non-isolated cover and a Freudenberg-NOK (FNGP) partially isolated cover. Isolated bolt assemblies using elastomeric grommets were used to isolate the cover.
Technical Paper

2005 Ford GT Magnesium I/P Structure

2004-03-08
2004-01-1261
This paper describes a new concept for a Ford GT instrument panel (IP) based on structural magnesium components, which resulted in what may be the industry's first structural IP (primary load path). Two US-patent applications are ongoing. Design criteria included cost, corrosion protection, crashworthiness assessments, noise vibration harshness (NVH) performance, and durability. Die casting requirements included feasibility for production, coating strategy and assembly constraints. The magnesium die-cast crosscar beam, radio box and console top help meet the vehicle weight target. The casting components use an AM60 alloy that has the necessary elongation properties required for crashworthiness. The resulting IP design has many unique features and the flexibility present in die-casting that would not be possible using conventional steel stampings and assembly techniques.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

21 Cubic Yard 580 PAY® Loader

1975-02-01
750817
To effectively utilize larger trucks (85 ton and up), open-pit mines and quarries need a larger front-end loader with high reliability and performance. This paper describes the design approach and tests carried out to design 21 cubic yard 580 PAY® loader to meet these requirements. Long fatigue life of structures was obtained by use of full penetration welds. New concept for power control was designed to effectively distribute power between hydraulics and drive train. Spring applied - pressure released brakes were designed into the axle. Tests were carried out in our laboratory and proving grounds to determine performance and reliability.
Technical Paper

22M-0156, Loading Classification for Fatigue Design Applied to Automotive Time-Series

2022-03-29
2022-01-0254
This study focuses on variable amplitude loadings applied to automotive chassis parts experiencing carmaker’s specific proving grounds. They are measured with respect to time at the wheel centres and composed of the six forces and torques at each wheel, within the standard vehicle reference frame. In the scope of high cycle fatigue, the loadings considered are supposedly acting under the structure yield stress. Among the loadings encountered during the vehicle lifetime, two classes stand out: Driven Road: loads measured during the vehicle manoeuvre; Random Road: loads mainly coming from the road asperity. To separate both effects, a frequency decomposition method is proposed before applying any lifetime assessment methods. The usual Rainflow counting method is applied to the Driven Road signal. These loadings, depending on the vehicle dynamics, are time-correlated. Thus, the load spectra is set only thanks to the vehicle accelerations time-measurement.
Technical Paper

2D-Simulation of Ignition Induced by Electrical Discharges

1999-03-01
1999-01-1178
Growing interest in pollutant emission reduction has increased the importance of numerical simulations of spark ignition as a first step in IC engine combustion. In this work, we present simulations involving the coupling of flow, chemical reactions and molecular transport with the discharge processes. The main focus hereby is to investigate the early stages of the formation of a flame kernel in a two-dimensional, cylindrical geometry with electrodes. The computational results shown here include the initial shock-determined phase after the breakdown of the channel, but also the transition to flame propagation for a methane-air mixture.
Technical Paper

3D Engine Analysis and MLS Cylinder Head Gaskets Design

2002-03-04
2002-01-0663
Multi-layer steel (MLS) cylinder head gaskets are becoming more widely used to seal an engine. Therefore, it is important to understand the interaction between the engine head, block and head gasket. While experimental methods for determining necessary gasket tightening loads and experimental data relating some gasket design parameters to failure are available, it is very costly and time consuming. A numerical method, such as the finite element (FE) method, has proven to be very useful and efficient in aiding gasket design. A 3D engine FE analysis can predict a number of parameters. Of particular interest are the motion as well as the contact profile of the head, block and gasket. This information, usually difficult or impossible to obtain from a 2D FE analysis, can be used to predict the two most common failure modes of a gasket, fatigue crack and leakage.
Technical Paper

3D-CFD Simulation of DI-Diesel Combustion Applying a Progress Variable Approach Accounting for Detailed Chemistry

2007-10-29
2007-01-4137
A chemical sub-model for realistic CFD simulations of Diesel engines is developed and demonstrated by application to some test cases. The model uses a newly developed progress variable approach to incorporate a realistic treatment of chemical reactions into the description of the reactive flow. The progress variable model is based on defining variables that represent the onset and temporal development of chemical reactions before and during self ignition, as well as the stage of the actual combustion. Fundamental aspects of the model, especially its physical motivation and finding a proper progress variable, are discussed, as well as issues of practical implementation. Sample calculations of Diesel-typical combustion scenarios are presented which are based on the progress-variable model, showing the capability of the model to realistically describe the ignition-and combustion phase.
Technical Paper

3M Approach to Implementing Life Cycle Management

2000-03-06
2000-01-0594
3M is committed to continuously improving products and their manufacture toward the goal of sustainability. The 3M Life Cycle Management (LCM) program has been established to implement this goal. It utilizes a matrix tool to facilitate the review. The matrix consists of LCM Stage (Material Acquisition, R&D Operations, Manufacturing Operations, and Customer Use/Disposal) and Impact (Environment, Health, Safety, and Energy/Resources). The program is coordinated at the staff level by the Corporate Product Responsibility group. The corporate goal is to apply LCM to all new and existing products. The LCM program started with evaluations of new products within business units. Since 3M produces more than 60,000 products manufactured from more than 10,000 different raw materials, the routine evaluation of individual products challenges available staff and business unit resources. A technology-based approach for doing LCMs has been implemented to meet the challenge.
Technical Paper

A 1D Model for Diesel Sprays under Reacting Conditions

2015-09-06
2015-24-2395
In this paper, a new 1D combustion model is presented. It is expected to combine good predictive capacities with a contained CPU time, and could be used for engine design. It relies on a eulerian approach, based on Musculus 1D transient spray model. The latter has been extended to model vaporizing, reacting sprays. The general features of the model are first presented. Then various sub models (spray angle and dilatation, vaporization, thermodynamic properties) are detailed. Chemical kinetics are described with a global scheme to keep computational time low. The spray discretization (mesh) and angle model are first discussed through a sensitivity analysis. The model results are then compared to experiments from ECN data base (SANDIA) realized in constant volume bombs, for both inert and reacting cases. Some detailed analysis of model results are performed, including comparisons of vaporizing and non-vaporizing cases, as well as inert and reacting cases.
Technical Paper

A 5-Zone Model to Improve the Diagnosis Capabilities of a Rapid Compression-Expansion Machine (RCEM) in Autoignition Studies

2017-03-28
2017-01-0730
In this work, a 5-zone model has been applied to replicate the in-cylinder conditions evolution of a Rapid Compression-Expansion Machine (RCEM) in order to improve the chemical kinetic analyses by obtaining more accurate simulation results. To do so, CFD simulations under motoring conditions have been performed in order to identify the proper number of zones and their relative volume, walls surface and temperature. Furthermore, experiments have been carried out in an RCEM with different Primary Reference Fuels (PRF) blends under homogeneous conditions to obtain a database of ignition delays and in-cylinder pressure and temperature evolution profiles. Such experiments have been replicated in CHEMKIN by imposing the heat losses and volume profiles of the experimental facility using a 0-D 1-zone model. Then, the 5-zone model has been analogously solved and both results have been compared to the experimental ones.
Technical Paper

A Basic Overview on Brake Disc Wear

2002-07-09
2002-01-2184
Wear of brake disc is normally faced with sophisticated experimental methods, a basic overview on the phenomena related to disc wear is presented in this paper. DTV consists in a heterogeneous wear of the disc surface and it is caused by two factors: run-out and the mechanism of disc wear. The importance of DTV is due to the vehicle vibrations that high DTV values can cause during braking. A model, that considers iron oxide layer evolution on disc surface, can evidence some of the principal characteristics of disc wear. In this model the wear rates of disc gray cast iron and iron oxide layer are considered as some of the principal factors in DTV evolution, as well as the kinetics of the chemical reactions involved.
Technical Paper

A Billion Engine Hours On Aluminum Bearings

1956-01-01
560058
HIGH load-carrying ability and fatigue strength, good embeddabiltty and conformability, and resistance to wear, seizure, and corrosion are factors that sold them on aluminum for bearings, the authors report. Bonded steel backing, they say, makes aluminum bearings even better. Retaining aluminum's good properties, it improves some of its bad points and gives such advantages as: Reduced bearing clearances, compared with those used with solid-aluminum bearings. No life limit in operation below 5000 psi fatigue stress value. Less sensitivity to high oil temperatures. Negligible wear (after 29,000 hr in one test). Simpler and less expensive bearing-locating designs. Special excellence for high-load, high-speed applications.
X