Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Cycle-to-cycle Transient Characteristics of Diesel Emissions during Starting

1999-10-25
1999-01-3495
Changes in exhaust gas emissions during starting in a DI diesel engine were investigated. The THC after starting increased until around the 50th cycle when the fuel deposited on the combustion chamber showed the maximum, and THC then decreased to reach a steady value after about 1000 cycles when the piston wall temperature became constant. The NOx showed an initial higher peak just after starting, and increased to a steady value after about 1000 cycles. Exhaust odor had a strong correlation with THC, and at the early stage odor was stronger than would be expected from the THC concentration. The THC increased with increased fuel injection amounts, decreased cranking speeds, and fuels with higher viscosity, higher 90% distillation temperature, and lower ignitability.
Technical Paper

Development of a Micro-Reactor HC-SCR System and the Evaluation of NOx Reduction Characteristics

2015-09-01
2015-01-2021
To reduce NOx emissions from diesel engines, the urea-SCR (selective catalytic reduction) system has been introduced commercially. In urea-SCR, the freezing point of the urea aqueous solution, the deoxidizer, is −11°C, and the handling of the deoxidizer under cold weather conditions is a problem. Further, the ammonia escape from the catalyst and the generation of N2O emissions are also problems. To overcome these disadvantages of the urea-SCR system, the addition of a hydrocarbon deoxidizer has attracted attention. In this paper, a micro-reactor SCR system was developed and attached to the exhaust pipe of a single cylinder diesel engine. With the micro-reactor, the catalyst temperature, quantity of deoxidizer, and the space velocity can be controlled, and it is possible to use it with gas and liquid phase deoxidizers. The catalyst used in the tests reported here is Ag(1wt%)-γAl2O3.
Technical Paper

Emissions Response of a European Specification Direct-Injection Gasoline Vehicle to a Fuels Matrix Incorporating Independent Variations in Both Compositional and Distillation Parameters

1999-10-25
1999-01-3663
An emissions programme has been undertaken to gain information on the effect of selected fuel parameters on gasoline direct injection (G-DI) vehicle technology(1) with respect to exhaust emissions. Seven fuel parameters, namely aromatic, methyl-tertiary-butyl ether (MTBE), sulphur and olefin content as well as 3 distillation parameters covering the whole boiling range, were independently investigated. It was found that, overall, the fuel effects on regulated (THC, CO, NOx), particulate (Pm), and CO2 emissions were relatively small.
Technical Paper

Improvements of Diesel Combustion and Emissions with Two-stage Fuel Injection at Different Piston Positions

2000-03-06
2000-01-1180
The fuel spray distribution in a DI diesel engine with pilot injection was actively controlled by pilot and main fuel injections at different piston positions to prevent the main fuel injection from hitting the pilot flame. A CFD analysis demonstrated that the movement of the piston with a cavity divided by a central lip along the center of the sidewall effectively separates the cores of the pilot and main fuel sprays. Experiments showed that an ordinary cavity without the central lip emitted more smoke, while smokeless, low NOx operation was realized with a cavity divided by a central lip even at heavy loads where ordinary operation without pilot injection emits smoke.
Technical Paper

Influence of the Molecular Structure of Hydrocarbon Fuels on Diesel Exhaust Emissions

1994-03-01
940676
The influence of the molecular structure of hydrocarbon fuels on soot, SOF, and NOx emissions from a diesel engine was analyzed while ignition delay and other physical fuel properties were kept constant. Mixtures of normal paraffin (n-tetradecane) and iso-paraffin (heptamethylnonane) were used as a base fuel and one of 5 kinds of hydrocarbons including mono-aromatic, di-aromatic, and non-aromatic was added. The aromatic content varied in the range of 0-60 vol % for the mono-aromatic fuels and 0-40 vol % for the di-aromatic fuels. The experimental results showed that regardless of the molecular structure of the fuel, both particulate and NOx emissions increased linearly with the C/H atomic ratio of the fuels under constant ignition lag. The increase in particulate emissions with C/H atomic ratio was caused by increases in dry soot. The SOF, THC, and BSEC were little affected by the C/H atomic ratio and molecular structure of the fuels.
Technical Paper

Low Emission and Knock-Free Combustion with Rich and Lean Biform Mixture in a Dual-Fuel CI Engine with Induced LPG as the Main Fuel

2001-09-24
2001-01-3502
Smokeless and ultra low NOx combustion without knocking in a dual-fuel diesel engine with induced LPG as the main fuel was established with a uniquely developed piston cavity divided by a lip in the sidewall. A small quantity of diesel fuel was directly injected at early compression stroke into the lower part of the cavity as an ignition source for this confined area, and this suppressed explosively rapid combustion just after ignition and spark-knock like combustion at later stage. A combination of the divided cavity, EGR, and intake air throttling was effective to simultaneously eliminate knocking, and reduce THC and NOx significantly.
X