Refine Your Search

Topic

Search Results

Technical Paper

100 Hour Endurance Testing of a High Output Adiabatic Diesel Engine

1994-03-01
940951
An advanced low heat rejection engine concept has successfully completed a 100 hour endurance test. The combustion chamber components were insulated with thermal barrier coatings. The engine components included a titanium piston, titanium headface plate, titanium cylinder liner insert, M2 steel valve guides and monolithic zirconia valve seat inserts. The tribological system was composed of a ceramic chrome oxide coated cylinder liner, chrome carbide coated piston rings and an advanced polyolester class lubricant. The top piston compression ring Included a novel design feature to provide self-cleaning of ring groove lubricant deposits to prevent ring face scuffing. The prototype test engine demonstrated 52 percent reduction in radiator heat rejection with reduced intake air aftercooling and strategic forced oil cooling.
Technical Paper

Adiabatic Engine Trends-Worldwide

1987-02-01
870018
Since the early inception of the adiabatic diesel engine in 1974, marked progress has taken place as a result of research efforts performed all over the world. The use of ceramics for heat engines in production applications has been limited to date, but is growing. Ceramic use for production heat engine has included: combustion prechambers, turbochargers, exhaust port liners, top piston ring inserts, glow plugs, oxygen sensors; and additional high temperature friction and wear components. The potential advantages of an adiabatic engine vary greatly with specific application (i.e., commercial vs. military, stationary vs. vehicular, etc.), and thus, a better understanding of the strengths and weaknesses (and associated risks) of advanced adiabatic concepts with respect to materials, tribology, cost, and payoff must be obtained.
Technical Paper

Advancements in High Temperature Cylinder Liner and Piston Ring Tribology

2000-03-06
2000-01-1237
The high temperature tribology issue for uncooled Low Heat Rejection (LHR) diesel engines where the cylinder liner piston ring interface exceeds temperatures of 225°C to 250°C has existed for decades. It is a problem that has persistently prohibited advances in non-watercooled LHR engine development. Though the problem is not specific to non-watercooled LHR diesel engines, it is the topic of this research study for the past two and one half years. In the late 1970s and throughout the 1980s, a tremendous amount of research had been placed upon the development of the LHR diesel engine. LHR engine finite element design and cycle simulation models had been generated. Many of these projected the cylinder liner piston ring top ring reversal (TRR) temperature to exceed 540°C[1]. In order for the LHR diesel to succeed, a tribological solution for these high TRR temperatures had to be developed.
Technical Paper

Advances in High Temperature Components for the Adiabatic Engine

1991-02-01
910457
An advanced low heat rejection engine concept has been selected based on a trade-off between thermal insulating performance and available technology. The engine concept heat rejection performance is limited by available ring-liner tribology and requires cylinder liner cooling to control the piston top ring reversal temperature. This engine concept is composed of a titanium piston, headface plate and cylinder liner insert with thermal barrier coatings. Monolithic zirconia valve seat inserts, and thermal barrier coated valves and intake-exhaust ports complete the insulation package. The tribological system is composed of chrome oxide coated cylinder, M2 steel top piston ring, M2 steel valve guides, and an advanced polyol ester class lubricant.
Technical Paper

Analysis of Current Spray Penetration Models and Proposal of a Phenomenological Cone Penetration Model

1996-02-01
960773
A phenomenological zero-dimensional spray penetration model was developed for diesel-type conditions for a constant volume chamber. The spray was modeled as a protruding cone which is well-mixed at its tip after passing through initial primary and secondary breakup zones. The resulting cone model is strictly dependent on injection parameters; density ratio, injection and chamber pressure, nozzle characteristics, and cone angle. The proposed model was compared with data from three different sources and performed well in most cases except for low density environments.
Technical Paper

Ceramics in Heat Engines

1979-02-01
790645
Recent developments of high performance ceramics have given a new impetus for the advancement of heat engines. The thermal efficiencies of the Otto, Diesel, Brayton and the Stirling cycle can now be improved by higher operating temperatures, reduced heat loss, and exhaust energy recovery. Although physical and chemical properties of the high performance ceramics have been improved significantly, they still fall short of meeting the requirements necessary for application and commercialization of advanced heat engine concepts. Aside from the need for greater strength, the problems of consistency, quality, design, material inspection, insulative properties, oxidation and other important features must be solved before high performance ceramics can be considered a viable material for advanced heat engines. Several approaches in developing an adiabatic engine design in the laboratory are shown.
Technical Paper

Cummins/TACOM Adiabatic Englue Program

1985-02-25
850356
Joint development of the adiabatic engine by Cummins Engine Company and the U. S. Army began with a feasibility analysis ten years ago. The effort was initially driven by the expectation of substantial performance improvement, a reduction in cooling system size, and several additional benefits. Program emphasis turned quickly to experimentation with the goal of demonstrating the feasibility of the adiabatic engine in working hardware. Several significant achievements were realized as have been reported earlier. Further development of the adiabatic engine is expected to be more evolutionary, paced by available technology in the areas of materials and tribology. Analysis capability necessary for insulated engine development has been found to be inadequate. Additional effort has gone into the development and validation of insulated engine analysis tools, both for cycle simulation and structural modeling.
Technical Paper

Cummins/TACOM Advanced Adiabatic Engine

1984-02-01
840428
Cummins Engine Company, Inc. and the U.S. Army have been jointly developing an adiabatic turbocompound engine during the last nine years. Although progress in the early years was slow, recent developments in the field of advanced ceramics have made it possible to make steady progress. It is now possible to reconsider the temperature limitation imposed on current heat engines and its subsequent influence on higher engine efficiency when using an exhaust energy utilization system. This paper presents an adiabatic turbocompound diesel engine concept in which high performance ceramics are used in its design. The adiabatic turbocompound engine will enable higher operating temperatures, reduced heat loss, and higher exhaust energy recovery, resulting in higher thermal engine efficiency. This paper indicates that the careful selection of ceramics in engine design is essential.
Technical Paper

Diesel Engine Cylinder Bore Coating for Extreme Operating Conditions

2007-04-16
2007-01-1439
Adiabatics, Inc., with the support of the U.S. Army Tank Automotive Research & Development Engineering Center (TARDEC) has developed a low cost, durable ceramic composite cylinder bore coating for diesel engines operating under severe conditions. This bore coating is a ceramic composite consisting primarily of Iron Oxide, Iron Titanate and Partially Stabilized Zirconia. It is applied by unique chemical thermal bonding technology developed at Adiabatics, Inc. and is referred to as Low Temperature Iron Titanate (LTIT). This coating has been tested against a wide range of cylinder bore treatments ranging from hard chrome plate to hard Nickel Silicon Carbide (NikaSil) and found to provide a superior sliding wear surface. It is superior because it is compatible against most common piston ring materials and coatings.
Journal Article

Effect of Swirl Ratio and Wall Temperature on Pre-lnjection Chemiluminescence During Starting of an Optical Diesel Engine

2009-11-02
2009-01-2712
Fuel wall impingement commonly occurs in small-bore diesel engines. Particularly during engine starting, when wall temperatures are low, the evaporation rate of fuel film remaining from previous cycles plays a significant role in the autoignition process that is not fully understood. Pre-injection chemiluminescence (PIC), resulting from low-temperature oxidation of evaporating fuel film and residual gases, was measured over 3200 μsec intervals at the end of the compression strokes, but prior to fuel injection during a series of starting sequences in an optical diesel engine. These experiments were conducted to determine the effect of this parameter on combustion phasing and were conducted at initial engine temperatures of 30, 40, 50 and 60°C, at swirl ratios of 2.0 and 4.5 at 1000 RPM. PIC was determined to increase and be highly correlated with combustion phasing during initial cycles of the starting sequence.
Technical Paper

Engine Component Design Methodology for Ceramic and Ceramic-Matrix Composite Materials

1988-02-01
880193
In the past two years, significant progress has been made in the application of ceramic-matrix composite materials to low heat rejection engine components. However, past R&D programs have identified a number of critical areas which require additional effort including: Life Prediction Methodology, Non-Destructive Testing, Design Methods, Data Base Development, and Verification of Design Rules. This paper discusses an integrated design methodology for addressing these research needs. The paper concludes with a specific example of a ceramic fiber-reinforced metal matrix composite piston which has been designed for application to advanced adiabatic engines.
Technical Paper

Experimental Analysis of Dynamics and Friction in Valve Train Systems

2002-03-04
2002-01-0484
The paper analyses the friction in the valve train of an internal combustion engine trying to separate the contribution of the different components to the total friction losses in the valve train. The measurements are performed on a running engine in order to avoid extraneous factors introduced by simulating rigs. The experimental engine is instrumented with strain gauge bridges on the rocker arm, the push rod and the camshaft to measure forces and moments acting on these components. Original techniques are developed to isolate and determine the friction forces between the valve stem and its guide, the friction force in the rocker arm bearing and the combined friction between cam/tappet and tappet/bore. It was found that the friction in the rocker arm bearing never reaches hydrodynamic conditions and that the friction coefficient between cam and tappet reduces with an increase in the engine speed.
Technical Paper

High Temperature Tribological Coatings for Advanced Military Diesel Engines

1997-02-24
970203
Experimental results focused towards developing tribological surface coatings coupled with liquid lubricant boundary layer effects, for advanced high temperature military diesel engine applications are presented. The primary focus of this work is in the area of advanced, low heat rejection (LHR) high output diesel engines, where high temperature boundary lubrication between the piston ring and the cylinder liner wall surface is critical for successful engine operation. The target temperature focused upon in our research is an operating top ring reversal (TRR) temperature of approximately 538°C. The technology advancement used for this application involves treating porous iron oxide/titanium oxide (Fe2O3/TiO2) and molybdenum (Mo) based composite thermal sprayed coatings with chemical binders to improve coating strength, integrity, and tribological properties. This process dramatically decreases open porosity to form an almost monolithic appearing coating at the surface1.
Technical Paper

Insulated Miller Cycle Diesel Engine

1996-02-01
961050
This paper investigates theoretically the benefits of the Miller cycle diesel engine with and without low heat rejection on thermodynamic efficiency, brake power, and fuel consumption. It further illustrates the effectiveness of thin thermal barrier coatings to improve the performance of military and commercial IC engines. A simple model which includes a friction model is used to estimate the overall improvement in engine performance. Miller cycle is accomplished by closing the intake valve late and the engine components are coated with PSZ for low heat rejection. A significant improvement in brake power and thermal efficiency are observed.
Technical Paper

Laboratory Development and Engine Performance of New High-Temperature Diesel Engine Lubricants

1989-02-01
890145
New high-temperature lubricants are being developed for future U.S. Army low heat rejection diesel engines. Compared to the best previous low heat rejection diesel engine lubricant, the first new lubricant developed was shown to (1) be less volatile, (2) have 55°C (100°F) greater oxidative stability, and (3) increase high-temperature single cylinder engine life more than five times. The new lubricant successfully completed a 400 hr multicylinder engine test in a U.S. Army 5-ton truck adiabatic engine. Lubricant property changes, engine wear, deposits and oil consumption were all very low. Two additional new liquid lubricants were developed for operation at higher engine temperatures than those of the 5-ton truck. Engine tests of these new lubricants will be conducted in the near future. Hybrid liquid/solid lubricants were formulated and evaluated for potential reduction of wear and friction at high temperature, with mixed results.
Technical Paper

Microscopic Characterization of Diesel Sprays at VCO Nozzle Exit

1998-10-19
982542
A long-distance microscope with pulse-laser as optical shutter up to 25kHz was used to magnify the diesel spray at the nozzle hole vicinity onto 35-mm photographic film through a still or a high-speed drum camera. The injectors examined are high-pressure valve-covered-orifice (VCO) nozzles, from unit injector and common rail injection systems. For comparison, a mini-sac injector from a hydraulic unit injector is also investigated. A phase-Doppler particle analyzer (PDPA) system with an external digital clock was also used to measure the droplet size, velocity and time of arrival relative to the start of the injection event. The visualization results provide very interesting and dynamic information on spray structure, showing spray angle variations, primary breakup processes, and spray asymmetry not observed using conventional macroscopic visualization techniques.
Technical Paper

Modeling and Measurement of Tribological Parameters between Piston Rings and Liner in Turbocharged Diesel Engine

2007-04-16
2007-01-1440
This paper presents tribological modeling, experimental work, and validation of tribology parameters of a single cylinder turbocharged diesel engine run at various loads, speeds, intake boost pressures, and cylinder liner temperatures. Analysis were made on piston rings and liner materials, rings mechanical and thermal loads, contact pressure between rings and liner, and lubricant conditions. The engine tribology parameters were measured, and used to validate the engine tribology models. These tribology parameters are: oil film thickness, coefficient of friction between rings and liner, friction force, friction power, friction torque, shear rate, shear stress and wear of the sliding surfaces. In order to measure the oil film thickness between rings and liner, a single cylinder AVL turbocharged diesel engine was instrumented to accept the difference in voltage drop method between rings, oil film, and liner.
Technical Paper

Nato Durability Test of an Adiabatic Truck Engine

1990-02-01
900621
A previous paper (1)* described the performance improvements which can be obtained by using an “adiabatic” (uncooled) engine for military trucks. The fuel economy improved 16% to 37% (depending upon the duty cycle) and was documented by dynamometer testing and vehicle testing and affirmed by vehicle simulation. The purpose of this paper is to document a NATO cycle 400 hour durability test which was performed on the same model adiabatic engine. The test results showed that the engine has excellent durability, low lubricating oil consumption and minimal deposits.
Technical Paper

Recent Development of Tribological Coatings for High Temperature Engines

1995-02-01
950979
Lubrication of advanced high temperature engines has been one of the greatest obstacles in the development of the Adiabatic engine. Liquid lubricants which gave lubricating properties as well as heat removal function can no longer carry out this duty when piston ring top ring reversal temperatures approach 540°C. Solid lubricants offer some hope. Since solid lubricants cannot perform the heat removal function, its coefficient of friction must be very low, at least <0.10, in order to prevent heat build up and subsequent destruction to the piston rings and cylinder liners. The Hybrid Piston concept developed in the U.S. Army Advanced Tribology program offers some hope, since the top solid lubricant ring slides over the bottom hydrodynamic lubricant film section during each stroke. This paper presents the progress made with the solid lubricant top ring in the Hybrid Piston. Four materials have shown promise in the laboratory to fullfil its mission.
X