Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 13850
Technical Paper

"Electro Gyro-Cator" New Inertial Navigation System for Use in Automobiles

1983-02-01
830659
The Electro Gyro-Cator allows a driver to monitor his progress, plot and follow courses to a destination, select alternate routes, and drive more safely on unfamiliar roads or at night. Employing a sealed helium gas-rate gyro, the Electro Gyro-Cator offers visual display (CRT display) of a car's present location, direction and route, with overlay maps for fast, simple route selection and monitoring. The primary elements of the unit include trip and direction sensors, a 16-Bit central processing unit, a CRT display screen and a collection of transparent overlay maps fitted to the screen.
Technical Paper

"Quattro"-Drive for Every Day Driving

1984-01-01
845070
An essential feature of the Audi Quattro permanent four-wheel drive system is in the inter-axle differential located on the hollow output shaft in the gearbox: the drive is taken from this differential forward to the front differential through the inside of the hollow shaft, and rearward to a propellor shaft driving the rear differential. The major advantages in everyday driving include improved traction and a reduced tendency toward throttle induced changes of attitude. The greater traction allows not only better progress in difficult road conditions; it also gives better acceleration in difficult traffic situations, such as when joining a busy main road. The more easily predictable handling response to throttle changes means that Quattro vehicles have better tracking stability. Altogether, the active safety and "roadability" are considerably improved.
Journal Article

(R)evolution of E/E Architectures

2015-04-14
2015-01-0196
This paper presents an overview of the evolution & revolution of automotive E/E architectures and how we at Bosch, envision the technology in the future. It provides information on the bottlenecks for current E/E architectures and drivers for their evolution. Functionalities such as automated driving, connectivity and cyber-security have gained increasing importance over the past few years. The importance of these functionalities will continue to grow as these cutting-edge technologies mature and market acceptance increases. Implementation of these functionalities in mainstream vehicles will demand a paradigm shift in E/E architectures with respect to in-vehicle communication networks, power networks, connectivity, safety and security. This paper expounds on these points at a system level.
Collection

0-D and 1-D Modeling and Numerics, 2017

2017-03-28
Papers in the session cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; and system level models for vehicle fuel economy and emissions predictions.
Collection

0-D and 1-D Modeling and Numerics, 2018

2018-04-03
Papers in the session cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; and system level models for vehicle fuel economy and emissions predictions.
Technical Paper

0D/1D Turbulent Combustion Model Assessment from an Ultra-Lean Spark Ignition Engine

2019-03-25
2019-01-1409
This paper focuses on an assessment of predictive combustion model using a 0D/1D simulation tool under high load, different excess air ratio λ , and different combustion stabilities (based on coefficient of variation of indicated mean effective pressure COVimep). To consider that, crank angle resolved data of experimental pressure of 500 cycles are recorded under engine speed 1000 RPM and 2000 RPM, wide-open throttle, and λ=1.0, 1.42, 1.7, and 2.0. Firstly, model calibration is conducted using 18 cases at 2000 RPM using 500 cycle-averaged in-cylinder pressure to find optimized model constants. Then, the model constants are unchanged for other cases. Next, different cycle-averaged pressure data are used as inputs in the simulation based on the COVimep for studying sensitivity of the turbulent model constants. The simulation is conducted using 1D simulation software GT-Power.
Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

1-D Modeling and Experimental Evaluation of Secondary Air Injection System for a Small SI Engine

2013-10-15
2013-32-9091
In order to comply with the existing emission norms of BSIII in India or EURO III and beyond that also, it is not sufficient to use the catalytic converter technology alone over the wide range of engine operating maps. Different studies across the world have proved that the cost, drivability, operating range against AFR, heat dissipation rate characteristics of catalytic converter limit their use in startup and idling conditions. One common way to tackle this condition is to use the Secondary Air Injection (SAI) system. In this system, small amount of air is injected after the exhaust port to initiate the thermal oxidation of gases. The right amount of air injected at the right time and at right location will reduce the emission by 37-90%. In the following study, SI engine vehicle with single cylinder, 160 cc and having carburetor is used as a test vehicle to evaluate the performance of SAI. The SAI system is modeled in AVL BOOST software and validated against the experimental data.
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

12-Volt Vacuum Fluorescent Display Drive Circuitry for Electronically Tuned Radios

1986-03-01
860126
The trend towards battery voltage vacuum fluorescent displays continues the technological advances in design and construction of VFD's, as they are applied to the automobile environment. With the ever increasing use of electronic displays for electronically tuned radios (ETR's), compact disc (CD) players, and other entertainment systems, advances in battery voltage displays and their associated drive circuitry have become a necessity. With the inherent advantages of low voltage operation and high information density, VFD's will continue to dominate the automobile audio markets. This paper will discuss battery voltage displays, the basic circuitry necessary to operate a vacuum fluorescent display, and comment on the “off the shelf” controller and driver circuitry available.
Technical Paper

145 - 210 Horsepower Agricultural Tractor Noise Reduction Program

1993-09-01
932434
This paper summarizes the techniques and guidelines which were used to reduce the driver perceived noise level of a 145-210 HP series of agricultural tractors. Graphs of case study test results and comments on subjective noise quality are provided to guide the acoustic novice through the complexities of the vehicle sound environment in a methodical problem solving format.
Technical Paper

15 Combustion Characteristics of an Improved Design of a Stratified Charge Spark Ignition Engine

2002-10-29
2002-32-1784
The characteristics of the combustion process in an improved design of a novel spark ignition engine studied by means of Computational Fluid Dynamics are presented. The engine is designed to work at low average combustion temperatures to achieve very low NOx emissions. The engine is a two-stroke, two piston in-line engine. The main combustion occurs in four combustion pre-chambers that have an annular shape with a nozzle on the side facing the cylinder. Fuel is directly injected into the pre-chambers by using high-pressure fuel injectors. A progressive burning process is expected to keep the flame inside the pre-chambers while the fast ejection of combustion products should produce effective mixing with the cold air in the cylinder. This fast dilution should guarantee a temperature drop of the combustion products thus reducing the formation of NOx via a thermal path.
Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Technical Paper

1974 Accident Experience with Air Cushion Restraint Systems

1975-02-01
750190
An air cushion restraint system has been available to the public on certain model passenger cars since January 1974. In response to this opportunity to obtain field experience, the National Highway Traffic Safety Administration has established a nationwide reporting network and investigative capability for accidents involving air-bag equipped cars. The reporting criteria for accidents require that the car be towed as a result of the accident, or that a front-seat occupant was injured, or that bag deployment occurred. The principal objective is to obtain the injury-reducing effectiveness of this restraint system in the total accident environment. This environment encompasses “towaway” accidents resulting in bag deployment and non-deployment. Definitive results are expected at the conclusion of the study. This paper summarizes the experience during the first year of the program, during which time the rate of accident occurrence was far less than originally expected.
Technical Paper

1987 Thunderbird Turbo Coupe Programmed Ride Control (PRC) Suspension

1987-02-01
870540
This paper describes Programmed Ride Control (PRC), the automatic adjustable shock absorber system designed and patented by Ford Motor Company. The system utilizes low shock absorber damping under normal driving conditions to provide soft boulevard ride, automatically switching to firm damping when required for improved handling. The system's microprocessor control module “learns” where the straight ahead steering wheel position is, allowing the system to respond to absolute steering wheel angle. A closed loop control strategy is used to improve system reliability and to notify the driver in the event of a system malfunction. Fast acting rotary solenoids control the damping rate of the shock absorbers.
Technical Paper

1991 Model Year Chrysler Mini-Van All Wheel Drive Vehicle

1990-09-01
901762
This paper presents the Chrysler 1991 Model Mini-Van All-Wheel-Drive (AWD) System. The AWD system is an enhanced traction system requiring no driver input or additional driving skills. It is transparent to the driver in that there is no perceived operating and/or handling difference relative to a front wheel driven vehicle. The system is aimed at safety and security in driving under all conditions. The paper further describes the design and development of the AWD vehicle system.
Technical Paper

1D Modeling of a High-Performance Engine Fueled with H2 And Equipped with A Low NOx Aftertreatment Device

2024-06-12
2024-37-0009
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations due to the reduced emission levels and high thermodynamic efficiency. This strategy is suitable for the purpose of passenger car applications and cannot be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of stoichiometric feeding condition is explored in the high performance engine, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model will be applied to the modeling of a V8 engine fueled with DI of hydrogen. The engine has been derived by a gasoline configuration and adapted to hydrogen in such a way to keep the same performance.
Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
X