Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Abdominal Injuries in Frontal Crashes: Influence of Occupant Age and Seating Position

2018-04-03
2018-01-0535
Objective: This study investigated the incidence of abdominal injuries in frontal crashes by occupant age and seating position. It determined the risk for abdominal injury (AIS 2+) by organ and injury source. Methods: 1997-2015 NASS-CDS was analyzed to estimate the occurrence of abdominal injuries in non-ejected, belted occupants involved in frontal crashes. Vehicles were included with 1997+ model year (MY). The annual incidence and rate for different types of abdominal injury were estimated with standard errors. The sources for abdominal injury were determined. Results: 77.8% of occupants were drivers, 16.7% were right-front passengers and 5.4% were rear passengers. Rear passengers accounted for 77.1% of 8-11 year old (yo) and 17.2% of 12-17 yo group. The risk for moderate abdominal injury (MAIS 2 + abdo) was 0.30% ± 0.053% in drivers, 0.32% ± 0.086% in right-front passengers and 0.38% ± 0.063% in rear occupants.
Technical Paper

Abdominal Injury and Response in Side Impact

1996-11-01
962410
The purpose of this paper is to address abdominal injury and response in cadaver whole body side impacts and abdominal injury risk functions in SID and BIOSID in whole body impacts. Side impact sled tests were performed at Wayne State University using cadavers, SID and BIOSID, with response measured at the shoulder, thorax, abdominal and pelvic levels. The data at the abdominal level are presented here. These data provide further understanding of abdominal tolerance and response in lateral impact and the ability of side impact dummies to predict abdominal injury. In addition, the padding data provide insight into tolerable armrest loads.
Technical Paper

An Evaluation of TTI and ASA in SID Side Impact Sled Tests

1994-11-01
942225
Thirty-seven SID side impact sled tests were performed using a rigid wall and a padded wall with fourteen different padding configurations. The Thoracic Trauma Index (TTI) and Average Spine Acceleration (ASA) were measured in each test. TTI and ASA were evaluated in terms of their ability to predict injury in identical cadaver tests and in terms of their ability to predict the harm or benefit of padding of different crush strengths. SID ASA predicted the injury seen in WSU-CDC cadaver tests better than SID TTI. SID ASA predicted that padding of greater than 20 psi crush strength is harmful (ASA > 40 g's). SID TTI predicted that padding of greater than 20 psi crush strength is beneficial (TTI < 85 g's). SID TTI predicts the benefit of lower impact velocity. However, SID ASA appears more useful in assessing the harm or benefit of door padding or air bags.
Technical Paper

Analysis of Occupants by Seating Location, Restraint Use and Injury Risk in Tow-Away Crashes

2024-04-09
2024-01-2752
This study was conducted to assess the occupant restraint use and injury risks by seating position. The results were used to discuss the merit of selected warning systems. The 1989-2015 NASS-CDS and 2017-2021 CISS data were analyzed for light vehicles in all, frontal and rear tow-away crashes. The differences in serious injury risk (MAIS 3+F) were determined for front and rear seating positions, including the right, middle and left second-row seats. Occupancy and restraint use were determined by model year groups. Occupancy relative to the driver was 27% in the right-front (RF) and 17% in the second row in all crashes. About 39% of second-row passengers were in the left seat, 15% in the center seat and 47% in the right seat. Restraint use was lower in the second row compared to front seats. It was 43% in the right-front and 32% in the second-row seats in all crashes involving serious injury. Restraint use increased with model year groups.
Technical Paper

Analysis of Rear Seat Sled Tests with the 5th Female Hybrid III: Incorrect Conclusions in Bidez et al. SAE 2005-01-1708

2019-04-02
2019-01-0618
Objective: Sled test video and data were independently analyzed to assess the validity of statements and conclusions reported in Bidez et al. SAE paper 2005-01-1708 [7]. Method: An independent review and analysis of the test data and video was conducted for 9 sled tests at 35 km/h (21.5 mph). The 5th female Hybrid III was lap-shoulder belted in the 2nd or 3rd row seat of a SUV buck. For one series, the angle was varied from 0, 15, 30, 45 and 60 deg PDOF. The second series involved shoulder belt pretensioning and other belt modifications. Results: Bidez et al. [7] claimed “The lap belts moved up and over the pelvis of the small female dummy for all impact angles tested.” We found that there was no submarining in any of the tests with the production lap-shoulder belts. Bidez et al. [7] claimed “H3-5F dummies began to roll out of their shoulder belt at… 30 degrees. Complete loss of torso support was seen at 45 degrees without significant kinetic energy dissipation.”
Technical Paper

Assessing the Safety Performance of Occupant Restraint Systems

1990-10-01
902328
The purpose of this study was to investigate approaches evaluating the performance of safety systems in crash tests and by analytical simulations. The study was motivated by the need to consider the adequacy of injury criteria and tolerance levels in FMVSS 208 measuring safety performance of restraint systems and supplements. The study also focused on additional biomechanical criteria and performance measures which may augment FMVSS 208 criteria and alternative ways to evaluate dummy responses rather than by comparison to a tolerance level. Additional analysis was conducted of dummy responses from barrier crash and sled tests to gain further information on the performance of restraint systems. The analysis resulted in a new computer program which determined several motion and velocity criteria from measurements made in crash tests.
Technical Paper

Assessment of Air Bag Deployment Loads

1990-10-01
902324
A study of air bag deployments has indicated that some occupant injury was “unexpected” and might have been related to loading by the inflating bag. Laboratory studies have found “high” loads on surrogates when they are out of a normal seating position and in the path and against an inflating air bag (out-of-position). The current study evaluated laboratory methods for assessing the significance of deployment loads and the interaction mechanics for the situation of an occupant located near or against a steering wheel mounted air bag. Analysis of the field relevance of the results must consider not only factors relating to the assessment of injury risk, but also exposure frequency. The highest responses for the head, neck, or torso were with that body region aligned with and against the air bag module. The risk of severe injury was low for the head and neck, but high when the torso was against and fully covering the air bag module.
Technical Paper

Assessment of a Three-Point Restraint System with a Pre-tensioned Lap Belt and an Inflatable, Force-Limited Shoulder Belt

2011-11-07
2011-22-0007
This study investigates the performance of a 3-point restraint system incorporating an inflatable shoulder belt with a nominal 2.5-kN load limiter and a non-inflatable lap belt with a pretensioner (the “Airbelt”). Frontal impacts with PMHS in a rear seat environment are presented and the Airbelt system is contrasted with an earlier 3-point system with inflatable lap and shoulder belts but no load-limiter or pretensioners, which was evaluated with human volunteers in the 1970s but not fully reported in the open literature (the “Inflataband”). Key differences between the systems include downward pelvic motion and torso recline with the Inflataband, while the pelvis moved almost horizontally and the torso pitched forward with the Airbelt. One result of these kinematic differences was an overall more biomechanically favorable restraint loading but greater maximum forward head excursion with the Airbelt.
Journal Article

Assessment of the 50th Hybrid III Responses in Blunt Rear Impacts to the Torso

2021-04-06
2021-01-0919
Blunt impacts to the back of the torso can occur in vehicle crashes due to interaction with unrestrained occupants, or cargo in frontal crashes, or intrusion in rear crashes, for example. Six pendulum tests were conducted on the back of an instrumented 50th percentile male Hybrid III ATD (Anthropomorphic Test Device) to determine kinematic and biomechanical responses. The impact locations were centered with the top of a 15-cm diameter impactor at the T1 or at T6 level of the thoracic spine. The impact speed varied from 16 to 24 km/h. Two 24 km/h tests were conducted at the T1 level and showed repeatability of setup and ATD responses. The 16 and 24 km/h tests at T1 and T6 were compared. Results indicated greater head rotation, neck extension moments and neck shear forces at T1 level impacts. For example, lower neck extension was 2.6 times and 3.8 times greater at T1 versus T6 impacts at 16 and 24 km/h, respectively.
Journal Article

Basilar Skull Fractures by Crash Type and Injury Source

2011-04-12
2011-01-1126
Purpose: This study investigates NASS-CDS data on basilar skull fractures by crash type and injury source for various crash scenarios to understand the injury risks, injury mechanisms and contact sources. Methods: 1993-2008 NASS-CDS data was used to study basilar skull fractures in adult front occupants by crash type and injury source. Injury risks were determined using weighted data for occupants with known injury status in 1994+ model year vehicles. In-depth analysis was made of far-side occupants in side impacts and rear crashes using the NASS electronic cases. Results: Basilar skull fractures occur in 0.507 ± 0.059% of rollovers and 0.255 ± 0.025% of side impacts. The lowest risk is in rear impacts at 0.015 ± 0.007%. The most common contact source is the roof, side rails and header (39.0%) in rollovers, the B-pillar (25.8%) in side impacts and head restraint (55.3%) in rear crashes.
Technical Paper

Biofidelity and Injury Assessment in Eurosid I and Biosid

1995-11-01
952731
Side impact pendulum tests were conducted on Eurosid I and Biosid to assess the biofidelity of the thorax, abdomen and pelvis, and determine injury tolerance levels. Each body region was impacted at 4.5, 6.7, and 9.4 m/s using test conditions which duplicate cadaver impacts with a 15 cm flat-circular 23.4 kg rigid mass. The cadaver database establishes human response and injury risk assessment in side impact. Both dummies showed better biofidelity when compared to the lowest-speed cadaver response corridor. At higher speeds, peak force was substantially higher. The average peak contact force was 1.56 times greater in Biosid and 2.19 times greater in Eurosid 1 than the average cadaver response. The Eurosid I abdomen had the most dissimilar response and lacks biofidelity. Overall, Biosid has better biofidelity than Eurosid I with an average 21% lower peak load and a closer match to the duration of cadaver impact responses for the three body regions.
Technical Paper

Biomechanics of Head Injury — Toward a Theory Linking Head Dynamic Motion, Brain Tissue Deformation and Neural Trauma

1988-10-01
881708
A “central” theory for the biomechanics of brain injury is proposed that includes the construct that acceleration of the head, per se, is not the proximate cause of injury. Rather, rapid motion of the skull causes displacement of the hard bony structures of the head against the soft tissues of the brain, which lag in their motion due to inertia and loose coupling to the skull. Relative displacement between brain and skull produces deformation of brain tissue and stretching of bridging veins, which contribute to the tissue-level causes of brain injury. The first step in an accurate interpretation of brain injury risk in dummies involves the measurement of the three-dimensional components of translational and rotational acceleration of the head.
Technical Paper

Bolster Impacts to the Knee and Tibia of Human Cadavers and an Anthropomorphic Dummy

1978-02-01
780896
Knee bolsters on the lower instrument panel have been designed to control occupant kinematics during sudden deceleration. However, a wide variability in car occupant anthropometry and choice of seating posture indicates that lower-extremity contacts with the impingement bolster could predominantly load the flexed leg through the knee (acting through the femur) or through the tibia (acting through the knee joint). Potential injuries associated with these types of primary loading may vary significantly and an understanding of potential trauma mechanisms is important for proper occupant restraint.
Technical Paper

Bounce-Overs: Fixed Object Impacts Followed by Rollovers

2004-03-08
2004-01-0334
In this study, U.S. crash data was analyzed to better understand bounce-over rollovers. Crash data was reviewed to evaluate the distribution of bounce-over crashes and injuries, initiation objects and impact locations. In passenger cars, bounce-over crashes account for 8.4% of rollovers but involve 36.2% of the seriously injured belted drivers. Most bounce-overs are initiated by contact with narrow objects such as a pole, tree or barrier, or large objects such as a ditch or embankment. Contact often occurs in the front of the vehicle. After contact, the vehicle yaws and rolls, and serious injuries are often sustained to the head. Based on field data, a laboratory test was developed to simulate a narrow object bounce-over. The test consists of towing a vehicle laterally on a fixture towards a stationary, angled barrier resting in gravel. The moving fixture is decelerated and the vehicle is released. The vehicle front impacts the edge of the barrier, simulating a narrow object impact.
Technical Paper

Case Study of Vehicle Maneuvers Leading to Rollovers: Need for a Vehicle Test Simulating Off-Road Excursions, Recovery and Handling

2003-03-03
2003-01-0169
Rollovers are an important vehicle safety issue. Various technologies have been developed to help prevent rollovers from occurring, but the evaluation of rollover resistance typically involves vehicle-handling tests that are conducted on flat road surfaces with a uniform or split coefficient of friction. The purpose of this study is to determine the precipitating events leading to rollovers by analyzing real-world rollover crashes. This is a first step in identifying and developing vehicle tests that are representative of the principal driving scenarios leading to rollovers. The sequence of events leading to rollovers was determined from 63 in-depth investigated cases in the NASS-CDS database from 1995-1999. The sequence was evaluated by vehicle maneuvers, vehicle stability, surface type, road and shoulder transition condition, posted and estimated speeds, vehicle type and driver injury severity.
Technical Paper

Considerations for a Femur Injury Criterion

1977-02-01
770925
A femur fracture injury criterion is presented that assesses the dependence of the permissible human knee load on the duration of the primary force exposure. Currently a constant allowable femur load limit of 7.6 kN (1700 lb) is specified in FMVSS 208, but recently the Federal Government proposed elevating the allowable limit to 10.0 kN (2250 lb), which is in excess of the limited experimental average static femur fracture force of 8.90 kN (2000 lb). A general analysis of all of the available biomechanics data and mathematical models on femoral impact response and fracture indicates a significant load time dependence for primary pulse durations below 20 ms that can elevate the permissible femur load above the Federally proposed allowable limit of 10.0 kN (2250 lb).
Technical Paper

Crash Injury Prevention: A Case Study of Fatal Crashes of Lap-Shoulder Belted Occupants

1992-11-01
922523
A case study was conducted of 123 crashes involving 144 fatally injured lap-shoulder belted front-seat occupants. The crashes occurred throughout the United States in 1985-86 and involved 97 driver and 47 right-front passenger deaths in new vehicles. A judgment was made by consensus of a safety panel on the potential for saving the victim's life by the addition of safety technology. Supplemental airbags provided the greatest potential for improving the life-saving effectiveness of current lap-shoulder belts. Overall, airbags may have prevented 12% of the belted occupant fatalities and 27% of the deaths in frontal crashes. The benefit of supplemental airbags was greater for the right-front passenger, in part, because of more females and occupants over 60 years of age in that seating position. A majority (68%) of the belted fatalities were judged unpreventable by reasonable restraint or vehicle modifications.
Technical Paper

Critical Issues in Finite Element Modeling of Head Impact

1982-02-01
821150
Current finite element models of head impact involve a geometrically simplified fluid-filled shell composed of homogeneous, linear and (visco) elastic materials as the primary surrogate of the human skull and brain. The numerical procedure, which solves the mechanical response to impact, requires and presumes continuity of stress and displacement between elements, a defined boundary condition simulating the neck attachment and a known forcing function. Our critical review of the models discussed, primarily, the technical aspects of the approximations made to simulate the head and the limitations of the proposed analytical tools in predicting the response of biological tissue. The following critical features were identified as major factors which compromised the accuracy and objectivity of the models: - The brain was approximated by a fluid contained in an elastic or rigid shell with no provision for relative motion between the shell and fluid.
Technical Paper

Design of a Modified Chest for EUROSID Providing Biofidelity and Injury Assessment

1989-02-01
890881
The purpose of this study was to replace the axial deforming elements in the current EUROSID dummy with spring steel ribs and attached damping material to provide improved biofidelity in the lateral chest impact response. This report provides a description of the design, construction, and evaluation of the modified EUROSID chest for injury assessment in side impact crashes. Three spring steel ribs were designed to provide stiffness and deflections of 120 mm when attached to the block on the spine of the EUROSID dummy. Damping material was epoxied to the ribs and the system provided biofidelity in the lateral impact response for blunt impact loading at 4.3 m/s and 6.7 m/s. The new design provides significantly reduced inertia of the near side rib cage, elastic and viscous properties that are representative of the lateral human response and the ability to measure the deflection response of the rib cage for injury assessment with the Viscous response.
Technical Paper

Dual-Recliner ABTS Seats in Severe Rear Sled Testswith the 5th, 50th and 95th Hybrid III

2021-04-06
2021-01-0917
Seat strength has increased over the past four decades which includes a transition to dual recliners. There are seat collision performance issues with stiff ABTS and very strong seats in rear impacts with different occupant sizes, seating positions and physical conditions. In this study, eight rear sled tests were conducted in four series: 1) ABTS in a 56 km/h (35 mph) test with a 50th Hybrid III ATD at MGA, 2) dual-recliner ABTS and F-150 in a 56 km/h (35 mph) test with a 5th female Hybrid III ATD at Ford, 3) dual-recliner ABTS in a 48 km/h (30 mph) test with a 95th Hybrid III ATD leaning inboard at CAPE and 4) dual-recliner ABTS and Escape in 40 km/h (25 mph) in-position and out-of-position tests with a 50th Hybrid III ATD at Ford. The sled tests showed that single-recliner ABTS seats twist in severe rear impacts with the pivot side deformed more rearward than the stanchion side.
X