Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 11749
Technical Paper

135 Days in Isolation and Confinement: The Hubes Simulation

1995-07-01
951512
The EUROMIR-95 flight was selected as model for the HUBES experiment: a similar duration (135 days), a similar crew (3 men), similar schedule organisation (8 hours work, 8 hours sleep, 8 hours off-duties), similar workload for the crew and the mission control (performance of scientific experiments), similar setup for communication and data processing, and similar layout of the MIR station, as the simulation was performed in the MIR simulator located at the Institute for BioMedical Problems (IBMP) in Moscow. The Scientific Programme of HUBES had been elaborated by integration of 31 experiments from more than 80 research proposals from Principal Investigators from Europe, USA and Russia, in domains of Physiology, Psychology, Operations and Technology.
Technical Paper

1958 Chevrolet LEVEL AIR SUSPENSION

1958-01-01
580049
CHEVROLET has made its new air-suspension system easily interchangeable in production line assembly with standard full-coil suspension by adopting a 4-link-type rear suspension with short and long arms. A feature of the system is the mounting of the leveling valves within the air-spring assemblies. These valves correct riding height continually at a moderate rate, regardless of whether the springs are leveling or operating in ride motion. The system provides constant frequency ride—ride comfort remains the same whether the car is occupied by the driver alone or is fully loaded.
Standard

2-D CAD Template for SAE J826 H-point Machine

2016-10-13
HISTORICAL
J826/2_201610
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

2-D CAD Template for SAE J826 H-point Machine

2022-02-18
CURRENT
J826/2_202202
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Technical Paper

2-Door Vehicle Body Local Force Evaluation with the IIHS, EuroNCAP, and LINCAP Side Impact Barriers

2004-03-08
2004-01-0333
Structure enhancement based on data monitored in a traditional side impact evaluation is primarily a trial and error exercise resulting in a large number of computer runs. This is because how the structure gets loaded and the degree of contribution of local structural components to resist the impact while absorbing energy during a side collision is not completely known. Developing real time complete load profiles on a body side during the time span of an impact is not an easy task and these loads cannot be calculated from that calculated at the barrier mounting plate. This paper highlights the load distribution, calculated by a procedure using computer aided engineering (CAE) tools, on a typical 2-door vehicle body side when struck by moving deformable barriers used in the insurance institute for highway safety (IIHS), EuroNCAP and LINCAP side impact evaluations.
Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

20 A Combined Experimental and Numerical Approach for Motorcycle Crank Noise: Experimental Validation

2002-10-29
2002-32-1789
The demands for comfort and a cleaner environment have been increasing for the past years for motorcycle as well as car manufacturers. With the need to decrease the time-to-market, there is a clear drive to apply CAE-based methods in order to evaluate new designs and to propose design changes that solve any identified problems. More specifically, the demands on the comfort of the rider are not only related to ride & handling and vibration levels(1), but also to the noise levels generated by the motorcycle. This paper presents the virtual modeling of one-cylinder engine of a motorcycle that identifies the mechanism behind the generation of an annoying noise. Furthermore, different possible design changes were evaluated in order to solve the problem. A combined experimental and numerical approach was followed to achieve this. Experiments were used to identify important parameters that determine the engine behavior and thus are critical for the modeling of such an engine.
Technical Paper

2000 HP Tractor-Trailer for the 21st Century

2002-11-18
2002-01-3141
This paper presents the conceptual design of a high-power, high-speed tractor-trailer for severe duty applications. Design of the tractor-trailer introduces several new concepts, including the general vehicle architecture, a new electrical transmission system and a new electric tandem axle. The vehicle architecture consists of a low drag cab concept with a fully integrated turbo-generator power source, an exhaust gas electric decontamination system and auxiliaries. The electric transmission introduces a new combination of electrical machines and power electronics designed to perform under maximum load with minimum dimension, weight and price. The electric tandem axle is a new concept of an all-wheel steering independent suspension with virtual electromagnetic differential.
Event

2024 NAIPC

2024-04-30
NAIPC reflects modern developments in alternative, electrified propulsion systems, high tech gasoline, diesel ICEs, hydrogen fuel cells, battery electric systems, variable transmissions.
Technical Paper

3-D Crash Analysis Using ADAMS

1988-09-01
885076
The dynamics of vehicle front end crash are studied using the ADAMS dynamic simulation code. The analysis is carried out in three dimensions and can capture the behavior associated with an asymmetrical structure or impact mode. Subroutines which allow the modeling of structural crush and plastic hinge formation, contact forces and friction forces are discussed. The method is relatively inexpensive, but does require a good understanding of the problem on the part of the analyst. A discussion of the techniques that are used to model the structural system is given. The results of the analysis are compared with experimental data and the correlation is very encouraging.
Technical Paper

3-D Horn

2020-04-14
2020-01-1375
3-D horn is a vehicle to vehicle communication-based technology which helps in reducing the noise pollution, which occurs, due to honking of automobile horns by letting only the drivers of the automobile to hear the horns and not the whole environment around him. To achieve this, several relatively small horn speakers are placed inside the car. These speakers are controlled by drivers of other cars. In this way honking will be heard only by the drivers. The most unique feature of this technology is the 3-D effect caused by the speakers which will let the driver know the location of the outside car which is honking. The 3-D effect is achieved by varying the intensity and proper allotment of sound to the positioned speakers in such a way that it will give the feel of the location of the outside car to the driver. Human detection is another important feature this technology provides. It will recognize whether the horn is honked for an automobile or for a human.
Technical Paper

3-Dimensional Simulation of Vehicle Response to Tire Blow-outs

1998-02-23
980221
Sudden tire deflation, or blow-out, is sometimes cited as the cause of a crash. Safety researchers have previously attempted to study the loss of vehicle control resulting from a blow-out with some success using computer simulation. However, the simplified models used in these studies did little to expose the true transient nature of the handling problem created by a blown tire. New developments in vehicle simulation technology have made possible the detailed analysis of transient vehicle behavior during and after a blow-out. This paper presents the results of an experimental blow-out study with a comparison to computer simulations. In the experiments, a vehicle was driven under steady state conditions and a blow-out was induced at the right rear tire. Various driver steering and braking inputs were attempted, and the vehicle response was recorded. These events were then simulated using EDVSM. A comparison between experimental and simulated results is presented.
Standard

3D CAD for SAE J826 H-Point Machine

2021-11-16
CURRENT
J826/3_202111
This document describes the 3D computer-aided design (CAD) parts and file formats for the HPM-1 H-point machine available from SAE. The intended purpose for this information is to provide a master CAD reference for design and benchmarking.
Technical Paper

3D Deformation and Dynamics of the Human Cadaver Abdomen under Seatbelt Loading

2008-11-03
2008-22-0011
According to accident analysis, submarining is responsible for most of the frontal car crash AIS 3+ abdominal injuries sustained by restrained occupants. Submarining is characterized by an initial position of the lap belt on the iliac spine. During the crash, the pelvis slips under the lap belt which loads the abdomen. The order of magnitude of the abdominal deflection rate was reported by Uriot to be approximately 4 m/s. In addition, the use of active restraint devices such as pretensioners in recent cars lead to the need for the investigation of Out-Of-Position injuries. OOP is defined by an initial position of the lap belt on the abdomen instead of the pelvis resulting in a direct loading of the abdomen during pretensioning and the crash. In that case, the penetration speed of the belt into the abdomen was reported by Trosseille to be approximately 8 to 12 m/s. The aim of this study was to characterize the response of the human abdomen in submarining and OOP.
Technical Paper

3D Head Models for Protective Helmet Development

2003-06-17
2003-01-2176
In order to improve the fit and comfort of helmets, we developed digital head models that represent the anthropometric and morphometric variability found in the U.S. Navy. We analyzed the size and shape variation using two related approaches. First, we used Procrustes superimposition, which minimizes the distances between all landmarks of all subjects. This allowed us to visualize the variation in landmark distribution of the face and to test for statistical differences. Second, we extracted curvatures along the surface of the head. This allowed us to characterize the variation in the shape of the head. To create a series of sized digital models, we used principal component analysis (PCA) to organize the variation in both the traditional measurements as well as the locations of the 3D landmarks. Using an adaptation of multivariate accommodation modeling we identified representative individuals who characterize 95% of the variation in size and shape.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

3D-Design, Fabrication and Metrological Characteristics for Knee Meniscus Replacement Prototype using Proposed Polymeric Material

2016-04-05
2016-01-0509
Due to the accidents of the motor vehicles and the osteoporosis, many people enface a lot of troubles and sometimes necessities for replacement of their knee joints. Practically, mechanical properties and surface characteristics of Total Knee Replacement (TKR) are very important parameters for improving the performance response in human. The meniscus is a small element and an essential part of the TKR. The knee meniscus has special feature allows the easy dynamic loading and motion of leg and foot with high accuracy and good balance. Therefore design and analysis of the geometrical shape for the meniscus replacement is worthy to be studied. In this paper, a proposed design using a computer software package has been presented. 3D simulation analyses of a variety of meniscus thickness and different materials under different loads are investigated. The compression stresses and surfaces deformations are determined numerically through the Finite Element Analysis (FEA) technique.
Technical Paper

4-Wheel-Drive Tractors From John Deere “Concepts 1982”

1981-09-01
810913
Today's agri-businessman is challenged to improve his efficiency to meet higher operating costs and to counter the effects of inflation. New concepts in John Deere's line of 4-wheel-drive tractors are targeted toward this goal and provide increased productivity through power increases, improved fuel economy, comfortable convenient operator environment and controls, increased hydraulic power, improved serviceability and repairability and monitoring of more critical vehicle functions.
Technical Paper

42 V Electric Air Conditioning Systems (E-A/CS) for Low Emissions, Architecture, Comfort and Safety of Next Generation Vehicles

2001-08-20
2001-01-2500
Electrical Air Conditioning Systems for 42 V vehicles will provide many benefits in terms of Environment protection, car Architecture, cabin Comfort and overall Safety. E-A/C Systems essentially differ from conventional ones by the use of electrical compressors. First of all, they will be particularly well adapted to new powertrains, helping to make them more environmentally friendly. Accurate control and high efficiency under the most common thermal conditions will reduce the A/C impact on fuel consumption. Besides, higher sealing integrity will cut emissions of refrigerant during normal operation and maintenance. Secondly, the use of an electrically driven compressor (EDC) will suppress a belt, and will reduce the packaging constraints. This will help to design new vehicle architectures. Thirdly, the electrification of air conditioning will allow better thermal comfort. In particular, E-A/C Systems provide a good opportunity for cabin pre-conditioning.
Technical Paper

4994 Tractor Hydraulic System

1984-09-01
841100
J I Case Company has produced four-wheel-drive agricultural tractors since 1964. In 1984 however, the flagship of the Case fleet changed hands. Rising labor costs and larger farming operations spearheaded the need for a more efficient larger tractor. January 1984 marked the introduction of the largest four-wheel-drive tractor in the history of Case, the 4994, a 400-gross engine horsepower tractor, Figure 1. Sheer horsepower alone however, would not meet the requirements of today's farming operations. Case Engineering realized that tomorrows tractors must have sufficient power to handle the wide variety of attachments available. They also realized that along with the unmatched power must come precise control of the attachment. These advancements in farming have required improvements to the tractor hydraulic system. This paper describes the hydraulic system of the 4994, Case's new flagship.
X