Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 18828
Technical Paper

(Paint) Film Finishing in Practice

1992-02-01
920732
(Paint) film as an alternative to spray applied paint has received growing attention in recent years. The potential for economic and environmental advantage and quality enhancement with this technology has been reported in several technical papers (Ref. 1, 3 and 4). The actual practice of film finishing, however, has received only limited notice. Film finishes have been applied to aluminum, stainless steel, PVC, and ABS. Starting in 1982, part applications include: wheel covers, door edge guards, window surrounds, roof drip moldings, lower windshield moldings, rocker panels, body side moldings, B pillars, and A pillars. Industry awareness and acceptance of film finishing as a viable alternative to spray applied paint is increasing. The two technologies are similar in many ways, yet distinctly different in other ways. They share a common goal: To yield a durable finish, economically and with superior visual impact. This paper reviews the unique aspects of film finishing.
Technical Paper

1.2GPa Advanced High Strength Steel with High Formability

2014-04-01
2014-01-0991
To reduce the Body in White (BIW) mass, it is necessary to expand the application of Advanced High-Strength Steels (AHSS) to complex shaped parts. In order to apply AHSS to complex shaped parts with thinner gauge, high formability steel is required. However, higher strength steels tend to display lower elongations, compared with low/medium strength steels. Current AHSS are applied to limited parts for this reason. The new 1.2GPa material, with high formability, was developed to solve this issue. The mechanical property targets for the high elongation 1.2GPa material were achieved by precise metallurgical optimization. Many material aspects were studied, such as formability, weldabilty, impact strength, and delayed fracture. As the result of this development, 1.2GPa AHSS has been applied to a new vehicle launched in 2013.The application of this material was the 1st in the world, and achieved a 11kg mass reduction.
Journal Article

100 Years of Corrosion Testing—Is It Time to Move beyond the ASTM D130? The Wire Corrosion and Conductive Deposit Tests

2023-09-22
Abstract The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century.
Technical Paper

1500 Hp Diesel Electric Tractor

1976-02-01
760647
The experience accumulated with a prototype 1000 HP diesel electric tractor since 1969 is described. The new 1500 HP V220 diesel electric tractors are described along with some of the initial operation of these two units. Experience with the initial 1000 HP unit and the two 1500 HP tractors confirm the necessity of additional testing and experimentation to refine the design to get greater productivity with reduced operator fatigue. The unpredictability of the load and operating surface are major problems that present a real challenge to the engineer.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1984 Continental Mark VII/Lincoln Continental Electronically-Controlled Air Suspension (EAS) System

1984-02-01
840342
This paper describes the Electronic Air Suspension (EAS) System developed by Ford Motor Company. Design trade-offs between load-carrying capacity necessary with conventional steel spring suspension systems and riding comfort are avoided when today's microcomputer technology is combined with a leveling air spring suspension. An electric air compressor with regenerative air dryer, three electronic “Hall Effect” height sensors, four air springs with integral solenoids, and a control module with a single chip microcomputer are the key EAS System components discussed.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

2-D Springback Analysis for Stretch-Bending Processes Based on Total Strain Theory

1995-02-01
950691
A theoretical model is presented for predicting springback of wide sheet metal subjected to 2D-stretch-bending operation. The material is assumed to be normal anisotropic with n-th power hardening law, σ = Fεn. Two types of stretch-bending experiment, bending with simultaneous stretching and stretch-bending followed by consecutive re-stretching, is conducted using AK sheet steel and sheet aluminum alloy A5182-O. The measured values of springback are in good agreement with analytical ones for a wide range of bending radii, stretching forces, and loading conditions. Furthermore, a calculation method for predicting springback configurations of 2D sheet metal parts with arbitrary cross-sections which include both stretch-bending and stretch-bending-unbending deformation is proposed.
Technical Paper

2004 Nissan 3.5L Cam Cover Material Study: Aluminum, Magnesium and Composite

2005-04-11
2005-01-0727
The present study compares the NVH performance of three different materials used on cam covers in automobiles, Aluminum (Al), Magnesium (Mg) and Thermoplastic (TP). The cam cover design used for this comparison was the 2004 Nissan Maxima 3.5L production cam cover which is made of a thermoplastic (TP). The Al and Mg covers for this study were created by sandcast, due to time constraints, via laser scanning techniques using the 2004 Nissan Maxima 3.5L production thermoplastic cover design. Note that sand-cast covers generally provide a less quiet sound field than the standard casting method. The Nissan production cover comes with a production baffle made of a similar material as the cover. Testing was conducted with and without the production baffle for all covers. The study was conducted for the production boundary condition of a non-isolated cover and a Freudenberg-NOK (FNGP) partially isolated cover. Isolated bolt assemblies using elastomeric grommets were used to isolate the cover.
Technical Paper

2005 Ford GT Magnesium I/P Structure

2004-03-08
2004-01-1261
This paper describes a new concept for a Ford GT instrument panel (IP) based on structural magnesium components, which resulted in what may be the industry's first structural IP (primary load path). Two US-patent applications are ongoing. Design criteria included cost, corrosion protection, crashworthiness assessments, noise vibration harshness (NVH) performance, and durability. Die casting requirements included feasibility for production, coating strategy and assembly constraints. The magnesium die-cast crosscar beam, radio box and console top help meet the vehicle weight target. The casting components use an AM60 alloy that has the necessary elongation properties required for crashworthiness. The resulting IP design has many unique features and the flexibility present in die-casting that would not be possible using conventional steel stampings and assembly techniques.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe

2005-04-11
2005-01-0465
This paper describes the engineering, manufacturing and integration necessary to produce the Corvette's first ever all-aluminum spaceframe (see Figure 1). The engineering and manufacturing of the spaceframe was a joint venture between General Motors and suppliers ALCOA (Aluminum Company of America) and Dana Corporation. ALCOA led the initial design of the spaceframe; Dana Corp led the manufacturing; General Motors' Engineering and Manufacturing groups led the integration of the assembly. The aluminum spaceframe design is modeled after the baseline steel structure of the Corvette coupe. The aluminum spaceframe reduces 140 lbs from the steel baseline and enters the plant at 285 lbs. This frame allows the 2006 Corvette Z06 to enter the market at a 3100 lbs curb weight. Aluminum casting, extruding, stamping, hydroforming, laser welding, Metal Inert Gas (MIG) welding, Self Pierce Riveting (SPR), and full spaceframe machining make up the main technologies used to produce this spaceframe.
Technical Paper

21 Cubic Yard 580 PAY® Loader

1975-02-01
750817
To effectively utilize larger trucks (85 ton and up), open-pit mines and quarries need a larger front-end loader with high reliability and performance. This paper describes the design approach and tests carried out to design 21 cubic yard 580 PAY® loader to meet these requirements. Long fatigue life of structures was obtained by use of full penetration welds. New concept for power control was designed to effectively distribute power between hydraulics and drive train. Spring applied - pressure released brakes were designed into the axle. Tests were carried out in our laboratory and proving grounds to determine performance and reliability.
Technical Paper

21st Century Aircraft Potable Water Systems

1999-10-19
1999-01-5556
Aircraft potable (drinking) water systems haven’t changed significantly in the last half-century. These systems consist of cylindrical water tanks pressurized by bleed air from the jet engines, with insulated stainless steel distribution lines. What has changed recently is the increase in the possibility of aircraft picking up contaminated drinking water at foreign and domestic stops. Customer awareness of these problems has also changed - to the point where having reliable drinking water is now a competitive issue among airlines. Old style potable water systems that are used on modern aircraft are high maintenance and exacerbate the growth of microbes because the water is static much of the time. The integrity of some pressurized water tanks are also a concern after years of use. Cost-effective mechanical and biological solutions exist that can significantly reduce the amount of chemicals added and provide good potable water.
Technical Paper

22M-0156, Loading Classification for Fatigue Design Applied to Automotive Time-Series

2022-03-29
2022-01-0254
This study focuses on variable amplitude loadings applied to automotive chassis parts experiencing carmaker’s specific proving grounds. They are measured with respect to time at the wheel centres and composed of the six forces and torques at each wheel, within the standard vehicle reference frame. In the scope of high cycle fatigue, the loadings considered are supposedly acting under the structure yield stress. Among the loadings encountered during the vehicle lifetime, two classes stand out: Driven Road: loads measured during the vehicle manoeuvre; Random Road: loads mainly coming from the road asperity. To separate both effects, a frequency decomposition method is proposed before applying any lifetime assessment methods. The usual Rainflow counting method is applied to the Driven Road signal. These loadings, depending on the vehicle dynamics, are time-correlated. Thus, the load spectra is set only thanks to the vehicle accelerations time-measurement.
Technical Paper

25 Development of Rapid Composite Plating System for Motorcycle Engine Cylinders

2002-10-29
2002-32-1794
Weight reduction of automobiles is key technology in order to improve fuel economy and driving performance. Concerning of the motorcycle engine, weight reduction is also the fundamental and important technologies. Cylinder is one of the main parts of engine and the wear characteristics of the cylinder liner are largely related to the engine performance. Gray iron liners squeezed in aluminum cylinder block have been widely used. This is due to the excellent resistance to abrasion of gray iron. In order to realize light all aluminum cylinder, the good abrasion resistant method is necessary to develop to be applied with inner surface of liners. We have developed the new Rapid Composite Plating System for the motorcycle engine cylinders. This system made it possible to adopt all aluminum cylinders without cast iron liners to new type of engine.
Technical Paper

32 Development of Silent Chain Drive System for Motorcycles

2002-10-29
2002-32-1801
Examining the noise reduction of a motorcycle, the requirement of an effective method of reducing a drive chain noise has been a pending issue similarly to noise originating from an engine or exhaust system, etc. Through this study, it became clear that the mechanism of chain noise could be classified into two; low frequency noise originated from cordal action according to the degree of chain engagement and high frequency noise generated by impact when a chain roller hits sprocket bottom. An improvement of urethane resin damper shape, mounted on a drive side sprocket, was effective for noise reduction of the former while our development of a chain drive that combined an additional urethane resin roller with an iron roller worked well for the latter. The new chain system that combined this new idea has been proven to be capable of reducing the chain noise to half compared with a conventional system.
Technical Paper

3D Engine Analysis and MLS Cylinder Head Gaskets Design

2002-03-04
2002-01-0663
Multi-layer steel (MLS) cylinder head gaskets are becoming more widely used to seal an engine. Therefore, it is important to understand the interaction between the engine head, block and head gasket. While experimental methods for determining necessary gasket tightening loads and experimental data relating some gasket design parameters to failure are available, it is very costly and time consuming. A numerical method, such as the finite element (FE) method, has proven to be very useful and efficient in aiding gasket design. A 3D engine FE analysis can predict a number of parameters. Of particular interest are the motion as well as the contact profile of the head, block and gasket. This information, usually difficult or impossible to obtain from a 2D FE analysis, can be used to predict the two most common failure modes of a gasket, fatigue crack and leakage.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

42 Volt Architecture on Powder Metallurgy - Opportunities

2003-03-03
2003-01-0443
The 42-Volt electrical system is being introduced in automobiles to provide the extra power needed for various electromagnetic devices. These paper discuses the opportunity offered by the 42Volt for powder metal parts and the challenges. Major opportunities are in motors. A brief discussion of motors and the performance requirements for the magnetic core material used is included. Brushless motor design can benefit the most from insulated iron powder compacts because of the design simplicity of powder metal parts and three dimensional flux capability which is most beneficial in rotating devices.(P/M stands for powder metallurgy and not permanent magnets)
X