Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 20596
Technical Paper

19-Color H2O Absorption Spectrometer Applied for Real-Time In-Cylinder Gas Thermometry in an HCCI Engine

2007-04-16
2007-01-0188
1 An all fiber-optic sensor has been developed to measure H2O mole fraction and gas temperature in an HCCI engine. This absorption-spectroscopy-based sensor utilizes a broad wavelength (1320 to 1380 nm) source (supercontinua generated by a microchip laser) and a series of fiber Bragg gratings (19 gratings centered on unique water absorption peaks) to track the formation and temperature of combustion water vapor. The spectral coverage of the system promises improved measurement accuracy over two-line diode-laser based systems. Meanwhile, the simplicity of the fiber Bragg grating chromatic dispersion approach significantly reduces the data reduction time and cost relative to previous supercontinuum-based sensors. The data provided by the system is expected to enhance studies of the chemical kinetics which govern HCCI ignition as well as HCCI modeling efforts.
Standard

2-D CAD Template for SAE J826 H-point Machine

2022-02-18
CURRENT
J826/2_202202
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

2-D CAD Template for SAE J826 H-point Machine

2016-10-13
HISTORICAL
J826/2_201610
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Technical Paper

2-D Springback Analysis for Stretch-Bending Processes Based on Total Strain Theory

1995-02-01
950691
A theoretical model is presented for predicting springback of wide sheet metal subjected to 2D-stretch-bending operation. The material is assumed to be normal anisotropic with n-th power hardening law, σ = Fεn. Two types of stretch-bending experiment, bending with simultaneous stretching and stretch-bending followed by consecutive re-stretching, is conducted using AK sheet steel and sheet aluminum alloy A5182-O. The measured values of springback are in good agreement with analytical ones for a wide range of bending radii, stretching forces, and loading conditions. Furthermore, a calculation method for predicting springback configurations of 2D sheet metal parts with arbitrary cross-sections which include both stretch-bending and stretch-bending-unbending deformation is proposed.
Technical Paper

2-Stage Torque Converter and Double Clutch

1952-01-01
520220
THE development of the two-stage torque converter with automatic double clutch is presented here. The author covers particularly the substitution of casting for fabrication for several of the units in the transmission.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe

2005-04-11
2005-01-0465
This paper describes the engineering, manufacturing and integration necessary to produce the Corvette's first ever all-aluminum spaceframe (see Figure 1). The engineering and manufacturing of the spaceframe was a joint venture between General Motors and suppliers ALCOA (Aluminum Company of America) and Dana Corporation. ALCOA led the initial design of the spaceframe; Dana Corp led the manufacturing; General Motors' Engineering and Manufacturing groups led the integration of the assembly. The aluminum spaceframe design is modeled after the baseline steel structure of the Corvette coupe. The aluminum spaceframe reduces 140 lbs from the steel baseline and enters the plant at 285 lbs. This frame allows the 2006 Corvette Z06 to enter the market at a 3100 lbs curb weight. Aluminum casting, extruding, stamping, hydroforming, laser welding, Metal Inert Gas (MIG) welding, Self Pierce Riveting (SPR), and full spaceframe machining make up the main technologies used to produce this spaceframe.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Design and Engineering Technology

2005-04-11
2005-01-0466
The General Motors (GM) Corvette design team was challenged with providing a C6 Z06 vehicle spaceframe that maintained the structural performance of its C5 predecessor while reducing mass by at least 56 kg. An additional requirement inherent to the project was that the design must be integrated into the C6 assembly processes with minimal disruption, i.e. seamless integration. In response to this challenge, a collaborative team was formed, consisting of design engineers from General Motors, Alcoa and Dana Corporation. The result of this collaborative effort is an aluminum Z06 spaceframe that satisfies the high performance expectations of the vehicle while reducing the mass by approximately 62 kg. The frame consists of aluminum extrusions, castings and sheets joined by MIG welding, laser welding and self-piercing rivets. The extrusions are 6XXX series alloys, the castings are permanent mold A356 while the sheet panels are formed from the 5XXX series of alloys.
Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

2006 Corvette Z06 Carbon Fiber Structural Composite Panels- Design, Manufacturing and Material Development Considerations

2005-04-11
2005-01-0469
The General Motors Corvette Product Engineering Team is in a continual search for mass-reduction technologies which provide performance improvements that are affordable and add value for their customers. The structural composite panels of the C6 Z06 provided a unique opportunity to extend the use of carbon fiber reinforced materials to reduce mass and enhance performance. The entire vehicle set of composite panels was reviewed as candidates for material substitution, with the selection criteria based on the cost per kg of mass saved, tooling cost required, and the location of the mass to be saved. Priority was extended to mass savings at the front of the vehicle. After a carefully balanced selection process, two components, both requiring redesign because of the Z06’s wider stance, met the criteria: the Front Wheelhouse Outer Panel and Floor Panels. The current Floor Panels, first used on the C5, are large and are a balsawood-cored glass fiber reinforced composite design.
Technical Paper

2013 SRT Viper Carbon Fiber X-Brace

2013-04-08
2013-01-1775
The 2013 SRT Viper Carbon Fiber X-Brace, styled by Chrysler's Product Design Office (PDO), is as much of a work of art as it is an engineered structural component. Presented in this paper is the design evolution, development and performance refinement of the composite X-Brace (shown in Figure 1). The single-piece, all Carbon Fiber Reinforced Plastic (CFRP) X-Brace, an important structural component of the body system, was developed from lightweight carbon fiber material to maximize weight reduction and meet performance targets. The development process was driven extensively by virtual engineering, which applied CAE analysis and results to drive the design and improve the design efficiency. Topology optimization and section optimization were used to generate the initial design's shape, form and profile, while respecting the package requirements of the engine compartment.
Technical Paper

25 Development of Rapid Composite Plating System for Motorcycle Engine Cylinders

2002-10-29
2002-32-1794
Weight reduction of automobiles is key technology in order to improve fuel economy and driving performance. Concerning of the motorcycle engine, weight reduction is also the fundamental and important technologies. Cylinder is one of the main parts of engine and the wear characteristics of the cylinder liner are largely related to the engine performance. Gray iron liners squeezed in aluminum cylinder block have been widely used. This is due to the excellent resistance to abrasion of gray iron. In order to realize light all aluminum cylinder, the good abrasion resistant method is necessary to develop to be applied with inner surface of liners. We have developed the new Rapid Composite Plating System for the motorcycle engine cylinders. This system made it possible to adopt all aluminum cylinders without cast iron liners to new type of engine.
Standard

265°F Vacuum Cure, Epoxy Prepregs

2017-11-08
WIP
AMS6566
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness. This is the base specification and it will have one slash/detail specs.
Standard

265°F Vacuum Cure, Epoxy Prepregs Type 42, Class 2, Grade 193, Style 12K-193-SFP-OSI

2017-11-10
WIP
AMS6566/1
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness. This is the base specification and it will have one slash/detail specs.
Standard

265°F, Autoclave Vacuum Bag Cure, Epoxy Prepreg, Type 33, Class 1, Grade 148, Intermediate Modulus Carbon Fiber

2017-11-10
WIP
AMS6568/1
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness. This is the base specification and it will have three slash/detail specs.
Standard

265°F, Autoclave Vacuum Bag Cure, Epoxy Prepreg, Type 40, Class 2, Grade 195, Style 3K-PW, Standard Modulus Carbon Fiber

2017-11-10
WIP
AMS6568/2
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness.
Standard

265°F, Autoclave Vacuum Bag Cure, Epoxy Prepregs

2017-11-08
WIP
AMS6568
The purpose of this specification is to allow procurement of a defined material corresponding to statistically derived material properties published in CMH-17. This material is intended for use in laminate applications with a service temperature up to 180 °F. They are typically used in structural applications requiring high strength and stiffness. This is the base specification and it will have three slash/detail specs.
Standard

350 °F Autoclave Cure, Low Flow Toughened Epoxy Prepregs

2015-12-02
CURRENT
AMS3961
The intent of this specification is for the procurement of the material listed on the QPL and, therefore, no qualification or equivalency threshold values are provided. Users that intend to conduct a new material qualification or equivalency program shall refer to the Quality Assurance section of this base specification, AMS3961. All material qualification and equivalency data has been archived and is available for review upon request. Contact the CMH-17 Secretariat (www.cmh17.org) for additional information.
X