Refine Your Search

Topic

Affiliation

Search Results

Journal Article

A Bayesian Inference based Model Interpolation and Extrapolation

2012-04-16
2012-01-0223
Model validation is a process to assess the validity and predictive capabilities of a computer model by comparing simulation results with test data for its intended use of the model. One of the key difficulties for model validation is to evaluate the quality of a computer model at different test configurations in design space, and interpolate or extrapolate the evaluation results to untested new design configurations. In this paper, an integrated model interpolation and extrapolation framework based on Bayesian inference and Response Surface Models (RSM) is proposed to validate the designs both within and outside of the original design space. Bayesian inference is first applied to quantify the distributions' hyper-parameters of the bias between test and CAE data in the validation domain. Then, the hyper-parameters are extrapolated from the design configurations to untested new design. They are then followed by the prediction interval of responses at the new design points.
Journal Article

A Comprehensive Validation Method with Surface-Surface Comparison for Vehicle Safety Applications

2017-03-28
2017-01-0221
Computer Aided Engineering (CAE) models have proven themselves to be efficient surrogates of real-world systems in automotive industries and academia. To successfully integrate the CAE models into analysis process, model validation is necessarily required to assess the models’ predictive capabilities regarding their intended usage. In the context of model validation, quantitative comparison which considers specific measurements in real-world systems and corresponding simulations serves as a principal step in the assessment process. For applications such as side impact analysis, surface deformation is frequently regarded as a critical factor to be measured for the validation of CAE models. However, recent approaches for such application are commonly based on graphical comparison, while researches on the quantitative metric for surface-surface comparison are rarely found.
Journal Article

A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty

2017-03-28
2017-01-0256
Vehicle weight reduction has become one of the most crucial problems in the automotive industry because that increasingly stringent regulatory requirements, such as fuel economy and environmental protection, must be met. The lightweight design needs to consider various vehicle attributes, including crashworthiness and stiffness. Therefore, in essence, the vehicle weight reduction is a typical Multidisciplinary Design Optimization problem. To improve the computational efficiency, meta-models have been widely used as the surrogate of FE model in the multidisciplinary optimization of large structures. However, these surrogate models introduce additional sources of uncertainties, such as model uncertainty, which may lead to the poor accuracy in prediction. In this paper, a method of corrected surrogate model based multidisciplinary design optimization under uncertainty is proposed to incorporate the uncertainties introduced by both meta-models and design variables.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Technical Paper

A Design and Optimization Method for Pedestrian Lower Extremity Injury Analysis with the aPLI Model

2020-04-14
2020-01-0929
As pedestrian protection tests and evaluations have been officially incorporated into new C-NCAP, more stringent requirements have been placed on pedestrian protection performance. In this study, in order to reduce the injury of the vehicle front end structure to the pedestrian's lower extremity during the collision, the advanced pedestrian legform impactor (aPLI) model was used in conjunction with the finite element vehicle model for collision simulation based on the new C-NCAP legform test evaluation regulation. This paper selected the key components which have significant influences on the pedestrian's leg protection performance based on the CAE vehicle model, including front bumper, front-cover plate, upper impact pillar, impact beam and lower support plate, to form a simplified model and conducted parametric modeling based on it.
Technical Paper

A Dynamic Local Trajectory Planning and Tracking Method for UGV Based on Optimal Algorithm

2019-04-02
2019-01-0871
UGV (Unmanned Ground Vehicle) is gaining increasing amounts of attention from both industry and academic communities in recent years. Local trajectory planning is one of the most important parts of designing a UGV. However, there has been little research into local trajectory planning and tracking, and current research has not considered the dynamic of the surrounding environment. Therefore, we propose a dynamic local trajectory planning and tracking method for UGV driving on the highway in this paper. The method proposed in this paper can make the UGV travel from the navigation starting point to the navigation end point without collision on both straight and curve road. The key technology for this method is trajectory planning, trajectory tracking and trajectory update signal generation. Trajectory planning algorithm calculates a reference trajectory satisfying the demands of safety, comfort and traffic efficiency.
Technical Paper

A Feature-Based Responses Prediction Method for Simplified CAE Models

2019-04-02
2019-01-0516
In real-world engineering problems, the method of model simplification is usually adopted to increase the simulation efficiency. Nevertheless, the obtained simulation results are commonly with low accuracy. To research the impact from model simplification on simulation results, a feature-based predictive method for simplified CAE model analysis is proposed in this paper. First, the point clouds are used to represent the features of simplified model. Then the features are quantified according to the factors of position for further analysis. A formulated predictive model is then established to evaluate the responses of interest for different models, which are specified by the employed simplification methods. The proposed method is demonstrated through an engineering case. The results suggest that the predictive model can facilitate the analysis procedure to reduce the cost in CAE analysis.
Technical Paper

A HiL Test Bench for Monocular Vision Sensors and Its Applications in Camera-Only AEBs

2019-04-02
2019-01-0881
This paper presents a HiL test bench specifically designed for closed-loop testing of the monocular-vision based ADAS sensors, whereby the animated pictures of the virtual scene is calibrated and projected onto a 120-degree circular screen, such that the camera sensor installed has the same vision as the observation of the real-world scene. A high-fidelity AEBs model is established and deployed in the real-time target of the HiL system, making intervention decisions based on the instance-level detection information transmitted from the physical sensor. By referring to the 2018 edition of the C-NCAP testing protocol, the HiL tests of the rear-end collision scenarios is performed to investigate the performance and characteristics of the longitudinal-motion sensing of the sensor sample under test.
Technical Paper

A Maximum Incompatibility Constrained Collaborative Optimization Method for Vehicle Weight Reduction

2018-04-03
2018-01-0585
Collaborative optimization is an important design tool in complex vehicle system engineering. However, there are many problems yet to be resolved when applying the conventional collaborative optimization method in vehicle body weight reduction, such as convergence difficulties and low optimization efficiency. To solve these problems, a maximum incompatibility constrained collaborative optimization method is proposed in the paper. First, the 1-norm equality constraints expression of the system level is used to replace the traditional 2-norm inequality constraints. Then, a maximum incompatibility is selected from modified inequality constraints to improve optimization efficiency. Finally, an overall compatibility constraint is introduced to decrease the influence caused by the initial point. A mathematical example is used to verify the effectiveness and stability of the proposed method.
Journal Article

A Potential Field Based Lateral Planning Method for Autonomous Vehicles

2016-09-14
2016-01-1874
As one of the key technologies in autonomous driving, the lateral planning module guides the lateral movement during the driving process. An integrated lateral planning module should consider the non-holonomic constraints of a vehicle, the optimization of the generated trajectory and the applicability to various scenarios. However, the current lateral planning methods can only meet parts of these requirements. In order to satisfy all the performance requirements above, a novel Potential Field (PF) based lateral planning method is proposed in this paper. Firstly, a PF model is built to describe the potential risk of the traffic entities, including the obstacles, road boundaries and lines. The potential fields of these traffic entities are determined by their properties and the traffic regulations. Secondly, the planning algorithm is presented, which comprises three modules: state prediction, state search and trajectory generation.
Technical Paper

A Research on Multi-Disciplinary Optimization of the Vehicle Hood at Early Design Phase

2020-04-14
2020-01-0625
Vehicle hood design is a typical multi-disciplinary task. The hood has to meet the demands of different attributes like safety, dynamics, statics, and NVH (Noise, Vibration, Harshness). Multi-disciplinary optimization (MDO) of vehicle hood at early design phase is an efficient way to support right design decision and avoid late-phase design changes. However, due to lacking in CAD models, it is difficult to realize MDO at early design phase. In this research, a new method of design and optimization is proposed to improve the design efficiency. Firstly, an implicit parametric hood model is built to flexibly change shape and size of hood structure, and generate FE models automatically. Secondly, four types of stiffness analysis, one type of modal analysis, together with pedestrian head impact analysis were established to describe multi-disciplinary concern of vehicle hood design.
Technical Paper

A Research on the Body-in-White (BIW) Weight Reduction at the Conceptual Design Phase

2014-04-01
2014-01-0743
Vehicle weight reduction has become one of the essential research areas in the automotive industry. It is important to perform design optimization of Body-in-White (BIW) at the concept design phase so that to reduce the development cost and shorten the time-to-market in later stages. Finite Element (FE) models are commonly used for vehicle design. However, even with increasing speed of computers, the simulation of FE models is still too time-consuming due to the increased complexity of models. This calls for the development of a systematic and efficient approach that can effectively perform vehicle weight reduction, while satisfying the stringent safety regulations and constraints of development time and cost. In this paper, an efficient BIW weight reduction approach is proposed with consideration of complex safety and stiffness performances. A parametric BIW FE model is first constructed, followed by the building of surrogate models for the responses of interest.
Technical Paper

A Similarity Evaluation Metric for Mesh Based CAE Model Simplification and Its Application on Vehicle

2017-03-28
2017-01-1332
To obtain higher efficiency in analysis process, simplification methods for computer-aided engineering (CAE) models are required in engineering. Current model simplification methods can meet certain precision and efficiency requirement, but these methods mainly concentrate on model features while ignoring model mesh which is also critical to efficiency of the analysis process and preciseness of the results. To address such issues, an integrated mesh simplification and evaluation process is proposed in this paper. The mesh is simplified to fewer features (e.g. faces, edges, and vertices) through edge collapsing based on quadric error metric. Then curvatures and normal vectors which are the objects to be evaluated are extracted from the original and simplified models for comparison. To obtain accurate results, the geometric information of mesh nodes and elements are both considered in this evaluation process. The proposed method is implemented on a vehicle crash test.
Journal Article

A Stochastic Bias Corrected Response Surface Method and its Application to Reliability-Based Design Optimization

2014-04-01
2014-01-0731
In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affect the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. This paper further investigates the Bayesian inference based model extrapolation method which is previously proposed by the authors, and provides a systematic and integrated stochastic bias corrected model extrapolation and robustness design process under uncertainty. A real world vehicle design example is used to demonstrate the validity of the proposed method.
Technical Paper

A Study of Model Validation Method for Dynamic Systems

2010-04-12
2010-01-0419
This paper presents an enhanced Bayesian based model validation method together with probabilistic principal component analysis (PPCA). The PPCA is employed to address multivariate correlation and to reduce the dimensionality of the multivariate functional responses. The Bayesian hypothesis testing is used to quantitatively assess the quality of a multivariate dynamic system. Unlike the previous approach, the differences between test and CAE results are used for dimension reduction though PPCA and then to assess the model validity. In addition, physics-based thresholds are defined and transformed to the PPCA space for Bayesian hypothesis testing. This new approach resolves some critical drawbacks of the previous method and provides desirable properties of a validation method, e.g., symmetry. A dynamic system with multiple functional responses is used to demonstrate this new approach.
Technical Paper

A Trajectory Planning Method for Different Drivers in the Curve Condition

2021-12-15
2021-01-7006
Lane Centering Control System (LCCS) is a lateral Advanced Driving Assistance System (ADAS) with low acceptance. One of the main reasons is that the centering trajectory can’t satisfy different drivers, which is more obvious in the curve condition. So LCCS adaptive to different drivers needs to be designed. The trajectory planning module is an important part for LCCS. It generates trajectory according to the road information for the vehicle control module to track. This paper uses road information obtained from the scenario established in Prescan, and the trajectory planning method proposed can generate trajectories for different drivers in the curve condition. To achieve the goal, this paper proposes a trajectory planning method which contains lateral path planning and longitudinal speed planning. Firstly, the overall strategy of “road equidistant segments division” is used to describe the road information.
Journal Article

Adhesion Control Method Based on Fuzzy Logic Control for Four-Wheel Driven Electric Vehicle

2010-04-12
2010-01-0109
The adhesion control is the basic technology of active safety for the four-wheel driven EV. In this paper, a novel adhesion control method based on fuzzy logic control is proposed. The control system can maximize the adhesion force without road condition information and vehicle speed signal. Also, the regulation torque to prevent wheel slip is smooth and the vehicle driving comfort is greatly improved. For implementation, only the rotating speed of the driving wheel and the motor driving torque signals are needed, while the derived information of the wheel acceleration and the skid status are used. The simulation and road test results have shown that the adhesion control method is effective for preventing slip and lock on the slippery road condition.
Journal Article

An Enhanced Input Uncertainty Representation Method for Response Surface Models in Automotive Weight Reduction Applications

2015-04-14
2015-01-0423
Vehicle weight reduction has become one of the viable solutions to ever-growing energy and environmental crisis. In vehicle design, response surface model (RSM) is commonly used as a surrogate of the high fidelity Finite Element (FE) model to reduce the computational time and improve the efficiency of design process. However, RSM introduces additional sources of uncertainty, such as model bias, which largely affects the reliability and robustness of the prediction results. The bias of RSM need to be addressed before the model is ready for extrapolation and design optimization. For the purpose of constructing and correcting the bias in RSMs, scheduling Design of Experiments (DOEs) must be conducted properly. This paper develops a method to arrange DOEs in order to build RSMs with high quality, considering the influence of input uncertainty.
Technical Paper

An Improved K-Means Based Design Domain Recognition Method for Automotive Structural Optimization

2018-04-03
2018-01-1032
Design optimization methods are widely used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges is to search for the optimal design in an efficient manner. For complex design and optimization problems such as automotive applications, optimization algorithms work better if the initial searching points are within or close to feasible domains. In this paper, the k-means clustering algorithm is exploited to identify sets of reduced feasible domains from the original design space. Within the reduced feasible domains, the optimal design can be obtained efficiently. A mathematical example and a vehicle body structure design problem are used to demonstrate the effectiveness of the proposed method.
Technical Paper

An Integrated Deformed Surfaces Comparison Based Validation Framework for Simplified Vehicular CAE Models

2018-04-03
2018-01-1380
Significant progress in modeling techniques has greatly enhanced the application of computer simulations in vehicle safety. However, the fine-meshed impact models are usually complex and take lots of computational resources and time to conduct design optimization. Hence, to develop effective methods to simplify the impact models without losing necessary accuracy is of significant meaning in vehicle crashworthiness analysis. Surface deformation is frequently regarded as a critical factor to be measured for validating the accuracy of CAE models. This paper proposes an integrated validation framework to evaluate the inconsistencies between the deformed surfaces of the original model and simplified model. The geometric features and curvature information of the deformed surfaces are firstly obtained from crash simulation. Then, the magnitude and shape discrepancy information are integrated into the validation framework as the surface comparison objects.
X