Refine Your Search

Search Results

Viewing 1 to 15 of 15
Technical Paper

A Quantitative Study of Fuel Efficiency of Diesel Vehicles with Diesel Particulate Filter in Repeated Test Cycles

2012-09-10
2012-01-1704
Diesel Particulate Filter (DPF) has become a key technology in modern diesel vehicles to achieve low emissions, and the performance of DPFs has been improved through considerable efforts by manufacturers. While DPF is essential to meeting the stringent regulations for particulate matter (PM), it has a negative impact on fuel efficiency (FE) due to its periodical regeneration for burning off the accumulated PM in DPF. Hence, detailed assessments on the FE impact of DPF regeneration technologies are necessary to better understand the FE potential of diesel vehicles. However, few quantitative FE studies have been reported regarding the DPF regeneration technologies applied to vehicles introduced into the market. We investigated the influence of the DPF regeneration on FE performance using three new diesel vehicles with different DPF regeneration technologies.
Technical Paper

A Study of a Lean Homogeneous Combustion Engine System with a Fuel Reformer Cylinder

2019-12-19
2019-01-2177
The Dual-Fuel (DF) combustion is a promising technology for efficient, low NOx and low exhaust particulate matter (PM) engine operation. To achieve equivalent performance to a DF engine with only the use of conventional liquid fuel, this study proposes the implementation of an on-board fuel reformation process by piston compression. For concept verification, DF combustion tests with representative reformed gas components were conducted. Based on the results, the controllability of the reformed gas composition by variations in the operating conditions of the reformer cylinder were discussed.
Journal Article

Chemical Reaction Processes of Fuel Reformation by Diesel Engine Piston Compression of Rich Homogeneous Air-Fuel Mixture

2017-11-15
2017-32-0120
To extend the operational range of premixed diesel combustion, fuel reformation by piston induced compression of rich homogeneous air-fuel mixtures was conducted in this study. Reformed gas compositions and chemical processes were first simulated with the chemistry dynamics simulation, CHEMKIN Pro, by changing the intake oxygen content, intake air temperature, and compression ratio. A single cylinder diesel engine was utilized to verify the simulation results. With the simulation and experiments, the characteristics of the reformed gas with respect to the reformer cylinder operating condition were obtained. Further, the thermal decomposition and partial oxidation reaction mechanisms of the fuel in extremely low oxygen concentrations were obtained with the characteristics of the gas production at the various reaction temperatures.
Technical Paper

Development of a Micro-Reactor HC-SCR System and the Evaluation of NOx Reduction Characteristics

2015-09-01
2015-01-2021
To reduce NOx emissions from diesel engines, the urea-SCR (selective catalytic reduction) system has been introduced commercially. In urea-SCR, the freezing point of the urea aqueous solution, the deoxidizer, is −11°C, and the handling of the deoxidizer under cold weather conditions is a problem. Further, the ammonia escape from the catalyst and the generation of N2O emissions are also problems. To overcome these disadvantages of the urea-SCR system, the addition of a hydrocarbon deoxidizer has attracted attention. In this paper, a micro-reactor SCR system was developed and attached to the exhaust pipe of a single cylinder diesel engine. With the micro-reactor, the catalyst temperature, quantity of deoxidizer, and the space velocity can be controlled, and it is possible to use it with gas and liquid phase deoxidizers. The catalyst used in the tests reported here is Ag(1wt%)-γAl2O3.
Technical Paper

Effects of Driving Conditions and Fuel Properties on Diesel Emissions

2005-10-24
2005-01-3835
For better understanding of diesel emissions in real world, the effects of driving conditions and fuel properties on diesel emissions were studied. A diesel engine system that is compliant to the Japanese New Short Term Regulation (J-2003 regulation) was used in this study. Major technologies for emission reduction were a common-rail high-pressure fuel injection equipment system, a cooled exhaust gas recirculation (EGR) system and a diesel oxidation catalyst (DOC). Various driving modes with a wide range of average vehicle speeds and accelerations were selected, including US FTP, US Highway, Japanese JC08, Japanese JE05, Tokyo Metropolitan Government #2, #5 and #8. Several kinds of test fuels of which characteristics were drastically changed in distillation range, aromatics content and sulfur content were used. A test fuel that complies with the Category-4 Specification of the World-Wide Fuel Charter (WWFC) was included.
Technical Paper

Effects of Spray Internal EGR Using CO2 Gas Dissolved Fuel on Combustion Characteristics and Emissions in Diesel Engine

2020-01-24
2019-32-0592
We have proposed the application of Exhaust Gas Recirculation (EGR) gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. Since EGR gas is included in the spray of EGR gas dissolved fuel, it directly contributes to combustion, and the further reduction of NOx emissions is expected rather than the conventional external EGR. In our research, since highly contained in the exhaust gas and highly soluble in the fuel, CO2 was selected as the dissolved gas to simulate EGR gas dissolved. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emission characteristics inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%, but NOx reduction does not have enough effect.
Technical Paper

Evaluation of HCCI Engine Potentials in Comparison to Advanced Gasoline and Diesel Engines

2006-10-16
2006-01-3249
The objective of this program was to improve the HCCI combustion process on a single-cylinder VCR engine by calibrating engine and HCCI operation specific factors such as EGR flow rates, intake air pressure, intake air temperature, compression ratio, etc. Due to the large number of factors to be investigated, a statistical design of experiments method (DoE) was utilized in order to reduce the number of test combinations in the calibration test matrix and, thus, the duration of the engine calibration task. Upon completion of the HCCI engine calibration, the engine was operated through a steady-state test matrix representing vehicle certification test cycles. Weighting factors for each of the test points were applied to estimate the engine performance and emissions in respect to certification requirements.
Technical Paper

Experimental Analysis on Soot Formation Process In DI Diesel Combustion Chamber by Use of Optical Diagnostics

2002-03-04
2002-01-0893
Soot formation process inside the combustion chamber of an DI diesel engine is focused as a phenomenological basic scheme by using several optical diagnostics technique for the improvement of diesel exhaust emission. We have conducted the series of optical measurement research for the clarification of combustion field in an DI diesel engine. Then, this paper is a kind of review by adding the fuel vapor properties and particle image velocimetry (PIV) analysis with focusing the soot formation process. The experiments were carried out in a small sized high-speed DI diesel engine installed with an optical access view. The spray characteristics and its flow field in 2-D field were measured by laser sheet scattering (LIS) method and PIV scheme.
Technical Paper

Fuel Effects on Emissions from Diesel Vehicles Equipped with Advanced Aftertreatment Devices

2005-10-24
2005-01-3700
Exhaust emissions from diesel vehicles equipped with advanced emission reduction technologies including the most up-to-date aftertreatment devices were examined from the viewpoint of fuel properties effects. Three kinds of diesel trucks with different emission levels were used: Vehicle A: compliant to the Japanese Long Term Regulation (J-1998 Regulation) Vehicle B: compliant to the Japanese New Short Term Regulation (J-2003 Regulation) Vehicle C: compliant to the J-2003 Regulation with NOx and PM emissions lowered by 75% and 85%, respectively, from the emissions standard values. Eight kinds of test fuels were used with their characteristics changed parametrically in distillation ranges, aromatics contents and sulfur content. Among them were those conforming to the Category-4 Specifications of the World Wide Fuel Charter (WWFC). Emissions of PM, NOx, THC, NMHC, CO and CO2 and fuel economy were examined.
Technical Paper

Gasoline Sulfur Effect on Emissions from Vehicles Equipped with Lean NOx Catalyst under Mileage Accumulation Tests

2003-10-27
2003-01-3077
The effect of sulfur concentration in gasoline fuel on emissions from vehicles equipped with lean NOx catalyst (LNC) was studied. The durability of the emission control systems against sulfur poisoning was evaluated using three recently launched vehicles under mileage accumulation tests. The major elements for the NOx trap function of the lean NOx catalysts evaluated in this study were Ba, Na and/or K. The range of sulfur contents of the test fuels was 3 to 80 ppm. The mileage accumulation was conducted up to 10,000 km mainly with Japanese 11 lap mileage accumulation driving cycle where the average and maximum velocities are 46 and 100 km/h respectively. The effects of vehicle velocity on emissions were also investigated by modifying the mileage accumulation driving cycle. As a result, it was found that the durability of the emission control systems against sulfur poisoning has been remarkably improved with the recently launched vehicles.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Technical Paper

Novel Analysis Approach for Better Understanding of Fuel and Engine Effects on Diesel Exhaust Emission - JCAP Combustion Analysis Working Group Report Part II

2002-10-21
2002-01-2825
1 A novel analysis approach called “Regression Density method” was developed for better understanding of fuel property effects on exhaust emission. The approach was applied to diesel emission data obtained in JCAP programs and emission models were conducted to analyze the effects of fuel properties and engine conditions on emissions. By introducing this analysis method, the relationship between density factor and aromatics factor (chemical composition factor) was identified, however, they have been reported previously as dominant factors in fuel properties. The effects of engine conditions and fuel properties on emissions were investigated quantitatively based on the statistically conducted emission models to clarify universal ways to emission reduction. The mechanism of emission formation of vehicles and engines with characteristic behavior was also examined.
Technical Paper

OH Radical Generation and Soot Formation/Oxidation in DI Diesel Engine

1998-10-19
982630
OH radical generated in a DI diesel engine has a close relationship to soot oxidation. To clarify this fact, the distribution of the natural emission of OH radical was captured by means of an interference filter system and that of soot was detected by the simultaneous application of a laser induced incandescence (LB) and a laser induced scattering (LIS). The experiments were carried out in a small sized high-speed DI diesel engine installed with an optical access view. The generation of OH radical and the formation/oxidation of soot are discussed by using both images.
Technical Paper

Visualization and Heat Release Analysis of Premixed Diesel Combustion with Various Fuel Ignitabilities and Oxygen Concentrations in a Constant Volume Combustion Vessel

2013-04-08
2013-01-0899
Low NOx and soot free premixed diesel combustion can be realized by increasing ignition delays in low oxygen atmospheres, as well as the combustion here also depends on fuel ignitability. In this report single intermittent spray combustion with primary reference fuels and a normal heptane-toluene blend fuel under several oxygen concentrations in a constant volume combustion vessel was analyzed with high-speed color video and pressure data. Temperature and KL factor distributions are displayed with a 2-D two-color method. The results show that premixing is promoted with a decrease in oxygen concentration, and the local high temperature regions, above 2200 K, as well as the duration of their appearance decreases with the oxygen concentration. With normal heptane, mild premixed diesel combustion can be realized at 15 vol% oxygen and there is little luminous flame.
X