Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Model for Predicting Turbulent Burning Velocity by using Karlovitz Number and Markstein Number under EGR Conditions

2021-09-21
2021-01-1146
The purpose of this paper is to build up a model for predicting turbulent burning velocity which can be used for One-Dimensional (1D) engine simulation. This paper presents the relationship between turbulent burning velocity, the Karlovitz number, and the Markstein number for building up the prediction model. The turbulent burning velocity was measured using a single-cylinder gasoline engine, which has an external Exhaust Gas Recirculation (EGR) system. In the experiment, various engine operating parameters, e.g. engine loads and EGR rates, and various engine specifications, i.e. different types of intake ports were tested. The Karlovitz number was calculated using Three-Dimensional Computational Fluid Dynamics (3D-CFD) and detailed chemical kinetics simulation with a premixed laminar flame model. The Markstein number was also calculated using detailed chemical kinetics simulation with the Extinction of Opposed-flow Flame model.
Technical Paper

A New Type Partial Flow Dilution Tunnel with Geometrical Partitioning for Diesel Particulate Measurement

2001-09-24
2001-01-3579
The authors have developed a new partial flow dilution tunnel (hereafter referred to as PPFT), whose principal device is a flux splitting gas divider, as a new means of measuring particulate emissions which can be applied to transient cycle testing of diesel engines. The advantage of this system is that it can achieve perfect constant velocity splitting by means of its structure, and theoretically can also maintain high splitting performance despite fluctuations in the exhaust flow rate, including those due to engine exhaust pulsation. We compared this system with a full tunnel by analyzing the basic performance of the system and measuring particulate matter (PM) using an actual vehicle engine.
Technical Paper

A Novel Integrated Series Hybrid Electric Vehicle Model Reveals Possibilities for Reducing Fuel Consumption and Improving Exhaust Gas Purification Performance

2021-09-21
2021-01-1244
This paper describes the development of an integrated simulation model for evaluating the effects of electrically heating the three-way catalyst (TWC) in a series hybrid electric vehicle (s-HEV) on fuel economy and exhaust gas purification performance. Engine and TWC models were developed in GT-Power to predict exhaust emissions during transient operation. These models were validated against data from vehicle tests using a chassis dynamometer and integrated into an s-HEV model built in MATLAB/Simulink. The s-HEV model accurately reproduced the performance characteristics of the vehicle’s engine, motor, generator, and battery during WLTC mode operation. It can thus be used to predict the fuel consumption, emissions, and performance of individual powertrain components. The engine combustion characteristics were reproduced with reasonable accuracy for the first 50 combustion cycles, representing the cold-start condition of the driving mode.
Technical Paper

A Study on N2O Formation Mechanism and Its Reduction in a Urea SCR System Employed in a DI Diesel Engine

2012-09-10
2012-01-1745
N₂O is known to have a significantly high global warming potential. We measured N₂O emissions in engine-bench tests by changing the NO/NH₃ ratio and exhaust gas temperature at the oxidation catalyst inlet in a heavy-duty diesel engine equipped with a urea SCR (selective catalytic reduction) system. The results showed that the peak N₂O production ratio occurred at an exhaust gas temperature of around 200°C and the maximum value was 84%. Moreover, the N₂O production ratio increased with increasing NO/NH₃. Thus, we concluded that N₂O is produced via the NO branching reaction. Based on our results, two methods were proposed to decrease N₂O formation. At low temperatures ~200°C, NO should be reduced by controlling diesel combustion to lower the contribution of NO to N₂O production. This is essential because the SCR system cannot reduce NOx at low temperatures.
Technical Paper

A Study on the Improvement of NOx Emission Performance in a Diesel Engine Fuelled with Biodiesel

2013-10-14
2013-01-2677
The use of biofuel is essential for the reduction of greenhouse gas emission. This study highlights the use of biodiesel as a means of reducing greenhouse gas emission from the diesel engine of heavy-duty vehicles. Biodiesel is fatty acid methyl ester (FAME) obtained through ester exchange reaction by adding methanol to oil, such as rapeseed oil, soybean oil, palm oil, etc. The CO2 emission from combustion of biodiesel is defined to be equivalent to the CO2 volume absorbed by its raw materials or plants in their course of growth. On the other hand, however, operation of diesel engine with biodiesel is known to increase the NOx emission when compared with that with conventional diesel fuel. Then suppressing this NOx increase is regarded as a critical issue. This paper consists of two parts: comprehending the factors of NOx emission increase and improving this emission performance in a diesel engine fuelled with biodiesel.
Technical Paper

A Study on the Improvement of NOx Reduction Efficiency for a Urea SCR System

2015-09-01
2015-01-2014
Urea SCR (Selective Catalytic Reduction) exhaust after-treatment systems are one of the most promising measures to reduce NOx emissions from diesel engines. Both Cu-zeolite (Cu-SCR) and Fe-zeolite (Fe-SCR) urea SCR systems have been studied extensively but not many detailed studies have been conducted on the combination of both systems. Thus, we carried out studies on such Combined-SCR systems and their capability to reduce NOx under various engine operating conditions. We also conducted transient engine tests using different catalyst systems to compare their performance. The results show that combined-SCR systems can reduce NOx more effectively than Fe-SCR or Cu-SCR alone. The best NOx reduction performance was achieved at a Cu ratio of 0.667 (i.e. Fe: Cu =1: 2). Combined-SCR thus apparently benefits from the characteristics of both Cu-SCR and Fe-SCR, allowing it to reduce NOx over a wide range of operating conditions.
Technical Paper

Advanced Diesel Combustion Using of Wide Range, High Boosted and Cooled EGR System by Single Cylinder Engine

2006-04-03
2006-01-0077
For reducing exhaust emissions of heavy-duty diesel engines, the authors made an experimental study of diesel combustion using a single cylinder engine. The engine performance and exhaust emissions have been measured using a wide range and high EGR rate under the conditions of high boost intake pressure. The engine test cell has been equipped the external supercharger that is able to raise the boost pressure to 500 kPa, and also equipped the EGR system to increase the EGR rate until 50% under the 500 kPa boost condition. In various test conditions of load and engine speeds the authors have obtained the results, that is, NOx has been reduced drastically without increasing Particulate Matter (PM).
Journal Article

Analysis of Behavior of Fuel Consumption and Exhaust Emissions under On-road Driving Conditions Using Real Car Simulation Bench (RC-S)

2009-09-13
2009-24-0139
The investigation of vehicle performances under on-road conditions has been required for emission reduction and energy saving in the real world. In this study, Real Car Simulation Bench (RC-S) was developed as an instrument for actual vehicle bench tests under on-road driving conditions, which could not be performed by using conventional chassis dynamometer (CH-DY). The experimental results obtained by RC-S were compared with the on-road driving data on the same car as used in RC-S tests. As a result, it was confirmed that RC-S could accurately reproduce the behavior of fuel consumption and exhaust emissions under on-road driving conditions.
Technical Paper

Application of Biodiesel Fuel to Modern Diesel Engine

2006-04-03
2006-01-0233
The 1997 Kyoto protocol came into effect in February, 2005 to reduce greenhouse gases within the period 2008-2012 by at least 5 % with respect to 1990 levels. Application of biodiesel fuel (BDF) to diesel engine is very effective to reduce CO2 emission, because BDF is carbon neutral in principle. The purpose of this project is to produce a light-duty biodiesel truck which can be suitable for emission regulation in next generation. The effect of BDF on the performance and emissions of modern diesel engine which was equipped with the aftertreatment for PM and NOx emissions was investigated without modifications of engine components and parameters, as a first step for research and development of biodiesel engine. Rapeseed oil methyl ester (RME) was selected in behalf of BDF, and combustion characteristics, engine performance and exhaust emissions were made a comparison between RME and petroleum diesel fuel by steady operation and Japan transient mode (JE05) tests.
Technical Paper

Application of Surovikin's Carbon Black Model for Simulating Soot Emission from Diesel Engine Using a Three Dimensional KIVA Code

2003-05-19
2003-01-1851
A soot model based on the kinetics of the formation of particles of carbon black, starting from radical nuclei to particle nuclei, is formulated and implemented to a 3 dimensional KIVA code. Model is capable of predicting total in-cylinder soot concentration and particle size distribution. Empirical parameters were tuned for the total soot emission of a single cylinder DI diesel engine. Model predicted results are quite consistent with reported experimental observations.
Technical Paper

Avoidance Algorithm Development to Control Unrealistic Operating Conditions of Diesel Engine Systems under Transient Conditions

2021-09-05
2021-24-0025
Emission regulations are becoming tighter, and Real Driving Emissions (RDE) is proposed as a testing cycle for evaluating modern engine emissions under a wide operation range. For this reason, engine manufacturers have been developing a method to effectively assess engine performances and emissions under a wide range of transient conditions. Transient engine performances can be evaluated efficiently by applying time-series data created by chirp signals. However, when the time-series data produced by the chirp signal are used directly, the engine hardware may damage, and emission performances deteriorate drastically. It is therefore essential to develop a method to avoid these undesirable operating conditions. This work aims to develop an algorithm to avoid such unrealistic operation conditions for engine performance evaluation. A virtual diesel engine (VDE) model is developed based on a four-cylinder engine using GT-POWER software.
Technical Paper

BSFC Improvement and NOx Reduction by Sequential Turbo System in a Heavy Duty Diesel Engine

2012-04-16
2012-01-0712
Reduction of exhaust emissions and BSFC has been studied using a high boost, a wide range and high-rate EGR in a Super Clean Diesel, six-cylinder heavy duty engine. In the previous single-turbocharging system, the turbocharger was selected to yield maximum torque and power. The selected turbocharger was designed for high boosting, with maximum pressure of about twice that of the current one, using a titanium compressor. However, an important issue arose in this system: avoidance of high boosting at low engine speed. A sequential and series turbo system was proposed to improve the torque at low engine speeds. This turbo system has two turbochargers of different sizes with variable geometry turbines. At low engine speed, the small turbocharger performs most of the work. At medium engine speed, the small turbocharger and large turbocharger mainly work in series.
Technical Paper

Combustion Improvement and Exhaust Emissions_Characteristics in a Direct Injection Natural Gas Engine by Throttling and Exhaust Gas Recirculation

2001-03-05
2001-01-0737
A natural gas direct injection test engine equipped with a newly developed natural gas injector was built. High total hydrocarbon (THC) emission at part-load and high NOx emission at high-load remain as problems for direct injection natural gas engines. THC reduction and combustion improvement by throttling and NOx reduction by EGR were investigated. The following results were obtained: (1) the combustion at light and medium load conditions is improved by throttling. It is possible to improve the thermal efficiency at light-load in spite of the pumping loss by throttling. THC emissions are greatly decreased in this condition; (2) a large NOx reduction can be obtained without combustion deterioration by appropriate EGR at high-load conditions; and (3) it is possible to decrease both THC and NOx emissions by both throttling and EGR at part-load conditions.
Technical Paper

Comparative Measurement of Nano-Particulates in Diesel Engine Exhaust Gas by Laser-Induced Incandescence (LII) and Scanning Mobility Particle Sizer (SMPS)

2004-06-08
2004-01-1982
Particulate Matter (PM) from diesel engines is thought to be seriously hazardous for human health. Generally, it is said that the hazard depends on the total number and surface area of particles rather than total mass of PM. In the conventional gravimetric method, only the total mass of PM is measured. Therefore, it is very important to measure not only the mass of PM but also size and number density of particulates. Laser-Induced Incandescence (LII) is a useful diagnostic for transient measurement of soot particulate volume fraction and primary particle size. On the other hand, Scanning Mobility Particle Sizer (SMPS) is also used to measure the size distribution of soot aggregate particulates at a steady state condition. However, the measurement processes and the phenomena used to acquire the information on soot particulate are quite different between the LII and SMPS methods. Therefore, it is necessary to understand the detailed characteristics of both LII and SMPS.
Technical Paper

Comparison of Numerical Results and Experimental Data on Emission Production Processes in a Diesel Engine

2001-03-05
2001-01-0656
Simulations of DI Diesel engine combustion have been performed using a modified KIVA-II package with a recently developed phenomenological soot model. The phenomenological soot model includes generic description of fuel pyrolysis, soot particle inception, coagulation, and surface growth and oxidation. The computational results are compared with experimental data from a Cummins N14 single cylinder test engine. Results of the simulations show acceptable agreement with experimental data in terms of cylinder pressure, rate of heat release, and engine-out NOx and soot emissions for a range of fuel injection timings considered. The numerical results are also post-processed to obtain time-resolved soot radiation intensity and compared with the experimental data analyzed using two-color optical pyrometry. The temperature magnitude and KL trends show favorable agreement.
Technical Paper

Continuous Measurement of Diesel Particulate Emissions by an Electrical Low-Pressure Impactor

2000-03-06
2000-01-1138
In addition to PM total matter, PM size distribution is recently receiving increased attention because of the dependency of PM size on human health effects. Thus, PM size distributions and the emission behavior under various driving patterns are becoming important in diesel particulate emissions. Electrical Low Pressure Impactor (ELPI)_is a candidate to measure continuously, not only PM mass, but also particulate size distribution. Therefore, we investigated using ELPI to measure diesel particulate mass and size distribution, together with time series behaviors under various driving patterns. This study demonstrated the feasibility of continuous measurement of PM size distribution by means of an ELPI. The typical PM size distribution curve on weight base has a peak of 0.18 micrometer. The typical PM size distribution curve on number base has a peak of 0.11 micrometer. Engine load influences these characteristics.
Technical Paper

Conversion Performance Prediction of Thermal-Deteriorated Three-Way Catalysts: Surface Reaction Model Development Considering Platinum Group Metals and Co-Catalyst

2021-09-05
2021-24-0077
Three-way catalyst (TWC) converters can purify harmful substances, such as carbon monoxide, nitrogen oxides, and hydrocarbons, from the exhaust gases of gasoline engines. However, large amounts of these substances may be emitted before the TWC reaches its light-off temperature during cold starts, and its performance may be impaired by thermal deterioration during high-load driving. In this work, a simulation model was developed using axisuite commercial software by Exothermia S.A to predict the light-off conversion performance of Pd/CeO2-ZrO2-Al2O3 catalysts with different degrees of thermal deterioration. The model considered detailed surface reactions and the main factor of the deterioration mechanism. In the detailed reaction mechanism, adsorption, desorption, and surface reactions of each gas species at active sites of the platinum group metal (PGM) particles were considered based on the Langmuir-Hinshelwood mechanism.
Technical Paper

Degradation of DeNOx Performance of a Urea-SCR System in In-Use Heavy-Duty Vehicles Complying with the New Long-Term Regulation in Japan and Estimation of its Mechanism

2016-04-05
2016-01-0958
Degradation of the deNOx performance has been found in in-use heavy-duty vehicles with a urea-SCR system in Japan. The causes of the degradation were studied, and two major reasons are suggested here: HC poisoning and deactivation of pre-oxidation catalysts. Hydrocarbons that accumulated on the catalysts inhibited the catalysis. Although they were easily removed by a simple heat treatment, the treatment could only partially recover the original catalytic performance for the deNOx reaction. The unrecovered catalytic activity was found to result from the decrease in conversion of NO to NO2 on the pre-oxidation catalyst. The pre-oxidation catalyst was thus studied in detail by various techniques to reveal the causes of the degradation: Exhaust emission tests for in-use vehicles, effect of heat treatment on the urea-SCR systems, structural changes and chemical changes in active components during the deactivation were systematically investigated.
Technical Paper

Development of High Pressure H2 Gas Injectors, Capable of Injection at Large Injection Rate and High Response Using a Common-rail Type Actuating System for a 4-cylinder, 4.7-liter Total Displacement, Spark Ignition Hydrogen Engine

2011-08-30
2011-01-2005
Key requirements of engines for vehicles are large output power and high efficiency, low emission as well as small size and light weight. Hydrogen combustion engines with direct injection have the characteristics to meet these factors. Tokyo City University, former Musashi Institute of Technology, has studied hydrogen fueled engines with direct injection since 1971. The key technology in the development of hydrogen fueled engines is the hydrogen injector for direct injection with the features such as high injection rate, high response and no hydrogen gas leakage from the needle valve of the hydrogen injector. A common-rail type system to actuate the needle valves of the high pressure hydrogen injectors was intentionally applied to fulfill good performances such as large injection rate, high response and no hydrogen gas leakage.
Technical Paper

Development of a Real-time NH3 Gas Analyzer Utilizing Chemi-luminescence Detection for Vehicle Emission Measurement

2004-10-25
2004-01-2907
Recently, after-treatment techniques for diesel engine emission have made remarkable progress with the development of suitable De-NOx catalysts. The urea-injection SCR system is one of the candidates for a high efficiency De-NOx method for diesel engine emissions. This system reduces NOx through a reaction with ammonia (NH3) that is generated from injected urea. In this system, it is very important to control the amount and timing of the urea injection so as to minimize the NH3 gas slip. Therefore, NH3 gas measurement is becoming important during the development of NOx after-treatment systems even though NH3 is not a target component of the current emission regulations. In this paper, a new NH3 gas analyzer utilizing a chemi-luminescence detection (CLD) method has been developed. The new NH3 analyzer consists of dual detectors (DCLDs) and a furnace for a NH3 oxidization catalyst. Real-time concentration of NH3 can be calculated from the difference of NOx readings of two detectors.
X