Refine Your Search

Topic

Search Results

Technical Paper

42 Catalytic Reduction of Marine Sterndrive Engine Emissions

2002-10-29
2002-32-1811
A 2001 General Motors 4.3 liter V-6 marine engine was baseline emissions tested and then equipped with catalysts. Emission reduction effects of exhaust gas recirculation (EGR) were also explored. Because of a U.S. Coast Guard requirement that inboard engine surface temperatures be kept below 200°F, the engine's exhaust system, including the catalysts, was water-cooled. Engine emissions were measured using the ISO-8178-E4 5-mode steady-state test for recreational marine engines. In baseline configuration, the engine produced 16.6 g HC+NOx/kW-hr, and 111 g CO/kW-hr. In closed-loop control with catalysts, HC+NOx emissions were reduced by 75 percent to 4.1 g/kW-hr, and CO emissions were reduced by 36 percent to 70 g/kW-hr of CO. The catalyzed engine was then installed in a Sea Ray 190 boat, and tested for water reversion on both fresh and salt water using National Marine Manufacturers Association procedures.
Technical Paper

A Characterization of Exhaust Emissions from Lean Burn, Rotary, and Stratified Charge Engines

1977-02-01
770301
This paper reports the results of an exhaust emissions characterization from the non-catalyst control systems employed on the Mazda RX-4 rotary, the Honda CVCC, and the Chrysler electronic lean burn. Throughout the paper, exhaust emissions from these vehicles are compared to those from a Chrysler equipped with an oxidation catalyst and an air pump. The emissions characterized are carbon monoxide, hydrocarbons, nitrogen oxides, sulfur dioxide, sulfates, hydrogen sulfide, carbonyl sulfide, hydrogen cyanide, aldehydes, particulate matter, and detailed hydrocarbons. A brief description of the sampling and analysis procedures used is included within the discussion.
Technical Paper

A Next-Generation Emission Test Procedure for Small Utility Engines - Part 1, Background and Approach

1990-09-01
901595
Measurement of emissions from small utility engines has usually been accomplished using steady-state raw emissions procedures such as SAE Recommended Practice J1088. While raw exhaust measurements have the advantage of producing modal exhaust gas concentration data for design feedback; they are laborious, may influence both engine performance and the emissions themselves, and have no provision for concurrent particulate measurements. It is time to consider a full-dilution procedure similar in principle to automotive and heavy-duty on-highway emission measurement practice, leading to improvements in many of the areas noted above, and generally to much higher confidence in data obtained. When certification and audit of small engine emissions become a reality, a brief dilute exhaust procedure generating only the necessary data will be a tremendous advantage to both manufacturers and regulatory agencies.
Technical Paper

Automotive Emissions of Ethylene Dibromide

1982-02-01
820786
Ethylene dibromide, a suspected carcinogen, and ethylene dichloride are commonly used in leaded gasoline as scavengers. Ethylene dibromide emission rates were determined from seven automobiles which had a wide range of control devices, ranging from totally uncontrolled to evaporative and catalytic emission controls. The vehicles were operated over a variety of cycles to simulate the normally encountered range of driving conditions. Evaporative losses were also measured. Tailpipe emission rates varied from 0 to 1300 micrograms ethylene dibromide per mile depending upon the control devices present and the operating cycle. Evaporative emission of ethylene dibromide ranged from 0.03 to 0.4 micrograms per mile equivalent. Emission of other lead-related compounds were sought but not found. The consequences of using leaded fuels in vehicles equipped with catalysts was investigated. Emission rates of ethylene dibromide increased with usage and appeared to depend on catalyst activity.
Technical Paper

Characterization of Diesel Crankcase Emissions

1977-02-01
770719
Methods for measurement and expression of crankcase or “blowby” emissions from diesels were developed and demonstrated on a test engine. These methods were subsequently used to characterize gas and particulate emissions from two in-service engines. Crankcase emissions were evaluated under engine operating conditions corresponding to the EPA 13-mode certification test. Substances for which analyses were conducted included regulated pollutants, sulfate, trace elements, nitrosamines, individual hydrocarbons, and aldehydes. Emissions from the diesel crankcases were compared to exhaust emissions (where possible) to assess their importance. Analysis for nitrosamines was continued beyond the original effort, utilizing another test engine.
Technical Paper

Characterization of Heavy - Duty Diesel Gaseous and Particulate Emissions, and Effects of Fuel Composition

1979-02-01
790490
Gaseous and particulate emissions from two heavy-duty diesel engines were characterized while the engines were operated on five different fuels. Characterization included mass rates of major exhaust products, plus analysis of particulate matter for sulfate, trace elements, major elements, total solubles, and other properties. Analysis of rate and composition data was conducted with regard to fuel and engine effects on particulate. Two large particulate samples were also collected for later analysis on groups of organics present.
Technical Paper

Characterization of MOD I Multifuel Stirling Demonstration Vehicle Emissions

1989-02-01
890150
Emissions from a Stirling engine-powered 1986 model light-duty truck were measured using current EPA (chassis dynamometer) emissions certification procedures and certain specialized tests. Three fuels were used including unleaded gasoline, a blend of MTBE in unleaded gasoline, and JP-4. City (FTP) cycles and Highway (FET) cycles were run on all three fuels, and emissions measured during the cycles included hydrocarbons (HC), carbon monoxide (CO), and oxides of nitrogen (NOx). Fuel economy was also calculated for these tests. Additional pollutants measured during some of the tests included aldehydes, 1,3-butadiene, individual hydrocarbon species, and total particulate matter. In addition to the cyclic schedules, steady-state conditions were run on JP-4 and straight gasoline for regulated emissions and fuel economy. The conditions consisted of several simulated gradients at three vehicle speeds, plus idle.
Technical Paper

Characterization of Particulate and Gaseous Emissions from Two Diesel Automobiles as Functions of Fuel and Driving Cycle

1979-02-01
790424
Particulate and gaseous emissions from two light-duty diesel vehicles were measured over eight operating schedules, using five different fuels. Characterization included regulated exhaust emissions and a number of unregulated constituents. Non-routine gas measurements included phenols, hydrocarbon boiling range, and aldehydes. Particulate characterization included mass rates and concentrations, visible smoke, aerodynamic sizing, total organics, BaP, sulfate, phenols, trace elements, and major elements. Statistical analysis of emissions data was undertaken using fuel properties and operating schedule statistics as independent variables. Regressions were computed for a few variables, and analysis of variance and multiple comparisons were used where the data were not suitable for regression analysis.
Technical Paper

Characterization of Snowmobile Particulate Emissions

2000-06-19
2000-01-2003
The primary goal of this project was to characterize particulate emissions from a snowmobile engine through measurement of particulate matter volatile organic fraction (VOF), particle size, and biological activity. Emissions were evaluated using both a mineral oil and a biosynthetic oil. Basic criteria pollutants were also measured from diluted exhaust using conventional techniques. Particulate matter volatile organic fraction was determined using a gas chromatographic method (DFI/GC). Particle size was characterized using a scanning mobility particle sizer (SMPS), and particulate matter biological activity was measured using a modification of the Ames bioassay procedure. Results revealed that more than 99 percent of the particles were ultrafine (Dp<100nm), with a peak concentration in the nanoparticle (Dp<50nm) size range. It was also observed that the use of a biosynthetic lubricant increased both volatile and total PM mass emissions compared to the mineral lubricant.
Technical Paper

Comparison of Petroleum and Alternate-Source Diesel Fuel Effects on Light-Duty Diesel Emissions

1983-10-31
831712
Exhaust emission data from several fuel effects studies were normalized and subjected to statistical analyses. The goal of this work was to determine whether emission effects of property variation in alternate-source fuels were similar, less pronounced, or more pronounced than the effects of property variation in petroleum fuels. A literature search was conducted, reviewing hundreds of studies and finally selecting nine which dealt with fuel property effects on emissions. From these studies, 15 test cases were reported. Due to the wide variety of vehicles, fuels, test cycles, and measurement techniques used in the studies, a method to relate them all in terms of general trends was developed. Statistics and methods used included bivariate correlation coefficients, regression analysis, scattergrams and goodness-of-fit determinations.
Technical Paper

Effects of a Narrow-Cut No, 1 Fuel, and Variation in Its Properties, on Light-Duty Diesel Emissions

1981-10-01
811193
Several properties of a refinery “straightrun kerosene“, which had a narrow boiling range approximating the middle of a No. 1 diesel fuel, were altered to study their effects on regulated and unregulated exhaust emissions. Eleven fuel blends, representing changes in nitrogen content, aromatic level, boiling point distribution, olefin content, and cetane number, were evaluated in a 1975 Mercedes-Benz 240D. Statistical analysis, including regression, was performed using selected fuel properties as independent variables. Higher aromatic levels were generally associated with increased emissions, while increased olefin levels were generally associated with decreased emissions.
Technical Paper

Emission Comparison of DDC 6V-92TA on Alcohol Fuels

1990-10-01
902234
The Detroit Diesel 6V-92TA engine has been redesigned to run on alcohol fuels to meet 1991 urban bus emission standards. A prototype engine was tested over the EPA transient procedure, using mixtures of methanol, ethanol (with and without water), gasoline, and ignition enhancer. Regulated and selected unregulated emissions were measured. Organic material hydrocarbon equivalent (OMHCE) emissions were significantly above the hydrocarbon emission standard; however, emissions of CO and NO, were below the 1991 emission standards for the fuel combinations used. Particulate emissions were close to the 1991 urban bus emission standard for some configurations. The method used for calculating OMHCE emissions when ethanol was used is also given.
Technical Paper

Emission Factors for Small Utility Engines

1991-02-01
910560
A major gap exists in available baseline emissions data on the small utility engine population between the mid-1970's and present day. As part of the input required for a standard-setting process, the California Air Resources Board has funded limited laboratory emission measurements on a number of modern small engines, both 2-stroke and 4-stroke designs. Exhaust constituents characterized in this study include total hydrocarbons, reactive hydrocarbons (RHC), methane, CO, NOx, CO2, O2, aldehydes, and particulate matter. A total of nine engines were evaluated, spanning the range from the smallest widely-used 2-strokes (about 20 cc displacement) to 4-strokes approaching 20 hp.
Technical Paper

Emissions From Snowmobile Engines Using Bio-based Fuels and Lubricants

1997-10-27
978483
Snowmobile engine emissions are of concern in environmentally sensitive areas, such as Yellowstone National Park (YNP). A program was undertaken to determine potential emission benefits of use of bio-based fuels and lubricants in snowmobile engines. Candidate fuels and lubricants were evaluated using a fan-cooled 488-cc Polaris engine, and a liquid-cooled 440-cc Arctco engine. Fuels tested include a reference gasoline, gasohol (10% ethanol), and an aliphatic gasoline. Lubricants evaluated include a bio-based lubricant, a fully synthetic lubricant, a high polyisobutylene (PIB) lubricant, as well as a conventional, mineral-based lubricant. Emissions and fuel consumption were measured using a five-mode test cycle that was developed from analysis of snowmobile field operating data.
Technical Paper

Emissions Patterns of Diesel-Powered Passenger Cars

1975-02-01
750682
The gaseous and particulate emissions from a light-duty diesel powered passenger car were measured by a variety of chemical analysis techniques for three different fuels, typical No. 1 and No. 2 commercial diesel fuels and the Federal Register No. 2-D smoke test fuel. Hydrocarbon emissions were found to be inversely related to fuel molecular weight. The NO2/NO ratio was found to be much higher than for gasoline engines approaching 0.3 at low load. Particulate emissions were approximately 0.3 grams/mile for all fuels and driving cycles tested. Sulfate emissions were high, approaching that of some catalyst cars. Sulfate emissions decreased with decreasing fuel sulfur and increased by a factor of two in highway driving over urban driving. The potential pollution problems with such cars are worthy of further study.
Technical Paper

Emissions from Direct-Injected Heavy-Duty Methanol-Fueled Engines (One Dual-Injection and One Spark-Ignited) and a Comparable Diesel Engine

1982-02-01
820966
Emissions from two heavy-duty four stroke direct injection engines designed to use methanol fuel, one using Diesel pilot fuel injection and the other using spark ignition, were characterized in this program along with those from a comparably-sized Diesel engine. Emissions evaluated during both steady-state and transient FTP procedures included regulated gases (HC, CO, and NOx), unburned methanol, aldehydes, other gaseous organics, total particulate, sulfate, soluble organics in particulate and BaP. The engines adapted for methanol fuel and using catalysts emitted less HC, CO, particulate, soluble organics, and BaP than the Diesel fueled engine.
Technical Paper

Emissions from Trucks by Chassis Version of 1983 Transient Procedure

1980-10-01
801371
Regulated gaseous, particulate and several unregulated emissions are reported from four heavy-duty diesel engines operated on the chassis version of the 1983 transient procedure. Emissions were obtained from Caterpillar 3208, Mack ENDT 676, Cummins Formula 290 and Detroit Diesel 8V-71 engines with several diesel fuels. A large dilution tunnel (57′ × 46″ ID) was fabricated to allow total exhaust dilution, rather than the double dilution employed in the stationary engine version of the transient procedure. A modal particulate sampler was developed to obtain particulate data from the individual segments of the 1983 transient procedure. The exhaust gas was analyzed for benzo(a)pyrene, metals, N2O, NO2, individual hydrocarbons and HCN. Sequential extractions were performed and measured versus calculated fuel consumptions were obtained.
Technical Paper

Exhaust Emissions from 2-Stroke Outboard Motors and Their Impact

1974-02-01
740737
To characterize exhaust emissions from water-cooled 2-stroke outboard motors (the predominant type), four new motors were tested on dynamometer stands. The engines ranged from 4-65 hp in size, and operating conditions were chosen along lines of simulated boat loading. All the measurements were taken at steady-state conditions. Emission concentrations were measured in raw exhaust gas and after the gases had been bubbled through water in a specially constructed tank. Constituents measured included hydrocarbons, CO, CO2, NO, NOx, O2, light hydrocarbons, and aldehydes. Emissions of sulfur oxides (SOx) were estimated on the basis of fuel consumed, and all the exhaust emissions data were used with available information on population and usage of motors to estimate exhaust emission factors and national exhaust emissions impact.
Technical Paper

Exhaust Emissions from Farm, Construction, and Industrial Engines and Their Impact

1975-02-01
750788
The research program on which this paper is based included both laboratory emission measurements and extrapolation of results to the national population of heavy-duty farm, construction, and industrial engines. Emission tests were made on four gasoline engines and eight diesel engines typical of those used in F, C, and I equipment. Gaseous and particulate emissions were measured during engine operation on well-accepted steady-state procedures, and diesel smoke was measured during both steady-state conditions and the Federal smoke test cycle. Emissions measured were hydrocarbons, CO, CO2, NO, NOx, O2, aliphatic aldehydes, light hydrocarbons, particulate, and smoke. Emission of sulfur oxides (SOx) was estimated on the basis of fuel consumed, and both evaporative and blowby hydrocarbons were also estimated where applicable (gasoline engines only). Data on emissions obtained from this study were compared with those available in the literature, where possible.
Technical Paper

Fuel Effects Study with In-Use Two-Stroke Motorcycles and All-Terrain-Vehicles

2013-10-14
2013-01-2518
This paper covers work performed for the California Air Resources Board and US Environmental Protection Agency by Southwest Research Institute. Emission measurements were made on four in-use off-road two-stroke motorcycles and all-terrain vehicles utilizing oxygenated and non-oxygenated fuels. Emission data was produced to augment ARB and EPA's off-road emission inventory. It was intended that this program provide ARB and EPA with emission test results they require for atmospheric modeling. The paper describes the equipment and engines tested, test procedures, emissions sampling methodologies, and emissions analytical techniques. Fuels used in the study are described, along with the emissions characterization results. The fuel effects on exhaust emissions and operation due to ethanol content and fuel components is compared.
X