Refine Your Search

Search Results

Technical Paper

A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980546
A 2-D CFD model was developed to describe the heat transfer, and reaction kinetics in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state as well as the transient behavior of the flow and heat transfer during the trap regeneration processes. The trap temperature profile was determined by numerically solving the 2-D unsteady energy equation including the convective, heat conduction and viscous dissipation terms. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations (Opris, 1997). The reaction kinetics were described using a discretized first order Arrhenius function. The 2-D term describing the reaction kinetics and particulate matter conservation of mass was added to the energy equation as a source term in order to represent the particulate matter oxidation. The filtration model describes the particulate matter accumulation in the trap.
Technical Paper

A Computer Heat Transfer and Hydrocarbon Adsorption Model for Predicting Diesel Particulate Emissions in Dilution Tunnels

1982-02-01
821218
The prediction of particulate concentrations in dlesel exhaust diluted in a dilution tunnel has been achieved using a computer model. The particulate collection filter temperature, soluble organic fraction (SOF) and solids fraction (SOL) of diesel particulate matter were predicted based on exhaust system and dilution tunnel variables that could be measured on a real-time basis. The SOF was assumed to be formed by adsorption of gaseous hydrocarbons onto the solids fraction. The accuracy of the model was determined by comparison to experimentally measured values. The model was able to predict SOF concentrations within 35%, filter temperatures within 3°G, and particulate (SOF + SOL) concentrations within 25% of measured values. A parametric study was conducted using the developed model; and improved test procedures, dilution tunnel dimensions, and federal testing guidelines were suggested.
Technical Paper

A Study of the Effect of a Catalyzed Particulate Filter on the Emissions from a Heavy-Duty Diesel Engine with EGR

2001-03-05
2001-01-0910
The effects of a catalyzed particulate filter (CPF) and Exhaust Gas Recirculation (EGR) on heavy-duty diesel engine emissions were studied in this research. EGR is used to reduce the NOx emissions but at the same time it can increase total particulate matter (TPM) emissions. CPF is technology available for retrofitting existing vehicles in the field to reduce the TPM emissions. A conventional low sulfur fuel (371 ppm S) was used in all the engine runs. Steady-state loading and regeneration experiments were performed with CPF I to determine its performance with respect to pressure drop and particulate mass characteristics at different engine operating conditions. From the dilution tunnel emission characterization results for CPF II, at Mode 11 condition (25% load - 311 Nm, 1800 rpm), the TPM, HC and vapor phase emissions (XOC) were decreased by 70%, 62% and 62% respectively downstream of the CPF II.
Technical Paper

An Experimental and Modeling Study of a Diesel Oxidation Catalyst and a Catalyzed Diesel Particulate Filter Using a 1-D 2-Layer Model

2006-04-03
2006-01-0466
Modeling of diesel exhaust after-treatment devices is a valuable tool in the development and performance evaluation of these devices in a cost effective manner. Results from steady state loading experiments on a catalyzed particulate filter (CPF) in a Johnson Matthey CCRT®, performed with and without the upstream diesel oxidation catalyst (DOC) are described in this paper. The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm) on a Cummins ISM 2002 heavy duty diesel engine. The data obtained were used to calibrate one dimensional (1-D) DOC and CPF models developed at Michigan Technological University (MTU). The 1-D 2-layer single channel CPF model helped evaluate the filtration and passive oxidation performance of the CPF. DOC modeling results of the pressure drop and gaseous emission oxidation performance using a previously developed model are also presented.
Technical Paper

CRC Evaluation of Techniques for Measuring Hydrocarbons in Diesel Exhaust-Phase IV

1975-02-01
750203
In 1972 and 1973, the CRC-APRAC Program Group on Diesel Exhaust carried out a fourth program to evaluate techniques for measuring concentration of hydrocarbon in diesel exhaust. The first two programs were conducted in 1967 and 1968. In them, a single cylinder diesel engine was shipped among 13 laboratories and each laboratory measured hydrocarbon emissions by their own method. Agreement among laboratories (instruments) was poor in both programs. The third program was conducted in 1970 at one laboratory on one engine. This time, agreement among instruments was much improved from the earlier programs. The fourth program was conducted to confirm these later results. In it, a multi-cylinder diesel generating set was circulated among 15 participating laboratories, and each laboratory measured exhaust hydrocarbon by methods that complied with SAE Recommended Practice J215, “Continuous Hydrocarbon Analysis of Diesel Exhaust.”
Technical Paper

Collection and Characterization of Particulate and Gaseous-Phase Hydrocarbons in Diesel Exhaust Modified by Ceramic Particulate Traps

1987-02-01
870254
Protocols for sampling and analysis of particulate and gaseous-phase diesel emissions were developed to characterize the chemical and biological effects of using ceramic traps as particulate control devices. A stainless-steel sampler was designed, constructed, and tested with XAD-2 sorbent for the collection of volatile organic compounds (VOC). Raw exhaust levels of TPM and SOF and mutagenicity of the SOF and VOC were all reduced when the traps were used. Hydrocarbon mass balances indicated that some hydrocarbons were not collected by the sampling system and that the proportions of collected SOF and VOC were altered by the use of the traps. SOF hydrocarbons appeared to be derived mainly from engine lubricating oil; VOC hydrocarbons were apparently fuel-derived. There was no apparent effect on SOF mutagenicity due to either sampling time or reexposure of particulate to exhaust gases.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Diesel Exhaust Odor Using the Diesel Odor Analysis System (DOAS)

1980-02-01
800422
The CRC-APRAC CAPI-1-64 Odor Panel was formed in 1973 to assess an instrumental measurement system for diesel exhaust odor (DOAS) developed under CRC-APRAC CAPE-7-68 by Arthur D. Little, Inc. Four cooperative studies were conducted by nine participating laboratories using common samples. The objectives of these studies were to define the DOAS system variables and to validate and improve the sampling and collection procedures. A fifth study, serving as a review of each analysis step, showed that analysis of common derived odorant samples could be conducted within acceptable limits by the participating laboratories. Three in-house sampling system design and operating parameter studies were conducted simultaneously with the cooperative work. The combined findings from the in-house and cooperative studies led to a tentative recommended procedure for measuring diesel exhaust odor.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Hydrocarbons in Diesel Exhaust (A CRC Report)

1971-01-11
710218
Methods available for measuring hydrocarbons in diesel exhaust were evaluated by the CRC-APRAC Program Group on Diesel Exhaust Composition during 1967-1970. Early tests showed distressingly large variations from instrument to instrument and undesirably large variations among repeated measurements by one instrument. Instrument quality and operator competence were better in later tests and agreement among instruments was relatively good and errors within instruments were small. Current techniques appear acceptable for engineering measurements. No further cooperative work is planned by CRC at present, but techniques for measuring hydrocarbons in diesel exhaust will be reappraised periodically.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Nitric Oxide and Carbon Monoxide (Phase IV Tests)

1975-02-01
750204
This is the fourth in a series of tests conducted as a Coordinating Research Council cooperative program to evaluate the measurement methods used to analyze diesel exhaust gas constituents. A multi-cylinder engine was circulated to 15 participants who measured emissions at three engine conditions. All 15 participants measured nitric oxide and carbon monoxide with several laboratories measuring nitric oxide by both NDIR (Non-Dispersive Infrared) and CHEMI (Chemiluminescence). Some participants also measured carbon dioxide, nitrogen dioxide, oxygen, and unknown span gases. The test results are compared with the Phase III cooperative tests which involved simultaneous measurement of emissions by participants. The precision of the results was poorer in Phase IV than Phase III.
Technical Paper

Cooperative Evaluation of Techniques for Measuring Nitric Oxide and Carbon Monoxide - A Report of the Program Group on Diesel Exhaust Composition of the Air Pollution Advisory Committee of the Coordinating Research Council, Inc.

1972-02-01
720104
A Coordinating Research Council cooperative program was conducted to evaluate the measurement methods used to analyze nitric oxide and carbon monoxide in diesel exhaust. Initially, a single-cylinder test engine was circulated among participants with poor results. Tests were then conducted at one site using a multicylinder diesel engine. Six organizations participated in the program. Exhaust analyses were conducted at steady-state engine conditions and on a 3 min cycle test. Span gases of unknown concentration were also analyzed. The participants results varied but averaged less than ±5% standard deviation both within (repeatability) and among (reproducibility) the instruments. The short cycle test was in good agreement with the steady-state measurements. No significant difference in the use of Drierite, nonindicating Drierite, or Aquasorb desiccants was evident in sampling system tests.
Technical Paper

Cooperative Study of Heavy Duty Diesel Emission Measurement Methods

1978-02-01
780112
A cooperative test program was conducted by the CRC-APRAC CAPI-1-64 Composition of Diesel Exhaust Program Group to evaluate the technical aspects of a proposed EPA recommended Heavy Duty Diesel Emission Measurement and Test Procedure. The proposed changes affected the sampling configurations and the types of instruments used. Six participants studied the effects of a number of variables on the proposed changes and evaluated some alternative systems that included both CHEMI and NDIR instruments. The tests were conducted at one site using a multi-cylinder engine operating on the 13-Mode Cycle. Equivalency of systems was demonstrated and the best performance was obtained with a special NDIR system.
Technical Paper

Effects of a Catalyzed Particulate Filter on Emissions from a Diesel Engine: Chemical Characterization Data and Particulate Emissions Measured with Thermal Optical and Gravimetric Methods

2003-03-03
2003-01-0049
A wide range of emissions were characterized from a heavy-duty diesel engine operated on conventional low sulfur (∼375 ppm) fuel, equipped with manually controlled EGR and a catalyzed particulate filter (CPF). The effect of the CPF and engine load was studied, along with a comparison of results between the gravimetric and thermal optical methods (TOM) for determining diesel particulate levels. Data were obtained from four of the EPA old 13 mode test cycle steady-state operating conditions, i.e., Modes 11, 10, 9, and 8 using a 1995 Cummins M11-330E engine with a Corning EX-80 cordierite particulate filter, coated with a platinum catalyst (5 g/ft3).
Technical Paper

Evaluation and Application of a Portable Tailpipe Emissions Measurement Apparatus for Field Use

1992-09-01
921647
This paper discusses the evaluation and application of a portable parked-vehicle tailpipe emissions measurement apparatus (EMA). The EMA consists of an exhaust dilution system and a portable instrument package. The EMA instantaneously dilutes and cools a sample of exhaust with compressed nitrogen or air at a known dilution ratio, thereby presenting it to instruments as it is presented to personnel in the surrounding environment. The operating principles and governing equations of the EMA are presented. A computational method is presented to determine the engine operating and performance parameters from the exhaust CO2 concentrations along with an assumed engine overall volumetric efficiency and brake specific fuel consumption. The parameters determined are fuel/air ratio, mass flow rates of fuel, air and exhaust emissions, and engine brake torque and horsepower.
Technical Paper

Experimental Study Comparing Particle Size and Mass Concentration Data for a Cracked and Un-Cracked Diesel Particulate Filter

2009-04-20
2009-01-0629
Steady state loading characterization experiments were conducted at three different engine load conditions and rated speed on the cracked catalyzed particulate filter (CPF). The experiments were performed using a 10.8 L 2002 Cummins ISM-330 heavy duty diesel engine. The CPF underwent a ring off failure, commonly seen in particulate filters, due to high radial and axial temperature gradients. The filters were cracked during baking in an oven which was done to regenerate PM collected after every loading characterization experiment. Two different configurations i.e. with and without a diesel oxidation catalyst (DOC) upstream of the CPF were studied. The data were compared with that on an un-cracked CPF at similar engine conditions and configurations. Pressure drop, transient filtration efficiency by particle size and PM mass and gaseous emissions measurements were made during each experiment.
Technical Paper

Modeling and Numerical Simulation of Diesel Particulate Trap Performance During Loading and Regeneration

2002-03-04
2002-01-1019
A 2-dimensional numerical model (MTU-FILTER) for a single channel of a honeycomb ceramic diesel particulate trap has been developed. The mathematical modeling of the filtration, flow, heat transfer and regeneration behavior of the particulate trap is described. Numerical results for the pressure drop and particulate mass were compared with existing experimental results. Parametric studies of the diesel particulate trap were carried out. The effects of trap size and inlet temperature on the trap performance are studied using the trap model. An approximate 2-dimensional analytical solution to the simplified Navier-Stokes equations was used to calculate the velocity field of the exhaust flow in the inlet and outlet channels. Assuming a similarity velocity profile in the channels, the 2-dimensional Navier-Stokes equations are approximated by 1-dimenisonal conservation equations, which is similar to those first developed by Bissett.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Emissions

2002-03-04
2002-01-1277
A study was conducted to assess the effects of a water-diesel fuel emulsion with and without an oxidation catalytic converter (OCC) on steady-state heavy-duty diesel engine emissions. Two OCCs with different metal loading levels were used in this study. A 1988 Cummins L10-300 heavy-duty diesel engine was operated at the rated speed of 1900 rpm and at 75% and 25% load conditions (EPA modes 9 and 11 respectively) of the 13 mode steady-state test as well as at idle. Raw exhaust emissions' measurements included total hydrocarbons (HC), oxides of nitrogen (NOx) and nitric oxide (NO). Diluted exhaust measurements included total particulate matter (TPM) and its primary constituents, the soluble organic (SOF), sulfate (SO42-) and the carbonaceous solids (SOL) fractions. Vapor phase organic compounds (XOC) were also analyzed. The SOF and XOC samples were analyzed for selected polynuclear aromatic hydrocarbons (PAHs).
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Status of Diesel Particulate Measurement Methods

1984-02-01
840345
The diesel engine emits exhaust particles that pose a unique set of measurement requirements. To document the state-of-the-art of measurement technology and to improve measurement quality, the Smoke and Particulate Panel of the Diesel Exhaust Composition group of the Coordinating Research Council reviewed published literature and particulate-sampling data generated by panel members to identify (1) the effects of key sampling parameters on measured particulate mass, (2) the causes of measurement variability, (3) the effects of dilution system design on particulate mass measurement, and (4) promising real-time mass measurement methods. The panel found greater measurement difficulty associated with particulates than for gaseous pollutants because of engine-produced variations, the sensitivity of measured particulate mass to dilution parameters, and random errors in the independent measurements which comprise a particulate measurement.
Technical Paper

The Dimensionless Correlation of Airflow for Vehicle Engine Cooling Systems

1991-02-01
910643
An analysis of vehicle engine cooling airflow by means of a one-dimensional, transient, compressible flow model was carried out and revealed that similarity theory could be applied to investigate the variation of the airflow with ambient and operating conditions. It was recognized that for a given vehicle engine cooling system, the cooling airflow behavior could be explained using several dimensionless parameters that involve the vehicle speed, fan speed, heat transfer rate through the radiator, ambient temperature and pressure, and the system characteristic dimension. Using the flow resistance and fan characteristics measured from a prototype cooling system and the computer simulation for the one-dimensional compressible flow model, a quantitative correlation of non-dimensional mass flow rate to three dimensionless parameters for a prototype heavy-duty truck was established. The results are presented in charts, tables, and formulas.
Technical Paper

The Effect of Fuel and Engine Design on Diesel Exhaust Particle Size Distributions

1996-02-01
960131
The objective of this research was to obtain diesel particle size distributions from a 1988 and a 1991 diesel engine using three different fuels and two exhaust control technologies (a ceramic particle trap and an oxidation catalytic converter). The particle size distributions from both engines were used to develop models to estimate the composition of the individual size particles. Nucleation theory of the H2O and H2SO4 vapor is used to predict when nuclei-mode particles will form in the dilution tunnel. Combining the theory with the experimental data, the conditions necessary in the dilution tunnel for particle formation are predicted. The paper also contains a discussion on the differences between the 1988 and 1991 engine's particle size distributions. The results indicated that nuclei mode particles (0.0075-0.046 μm) are formed in the dilution tunnel and consist of more than 80% H2O-H2SO4 particles when using the 1988 engine and 0.29 wt% sulfur fuel.
X