Refine Your Search

Topic

Search Results

Technical Paper

A Fuel Sensitive Ignition Delay Model for Direct Injection Diesel Engine Operating under EGR Diluted Conditions

2018-04-03
2018-01-0231
This empirical work investigates the impacts of thermodynamic parameters, such as pressure and temperature, and fuel properties, such as fuel Cetane number and aromatic contents on ignition delay in diesel engines. Systematic tests are conducted on a single-cylinder research engine to evaluate the ignition delay changes due to the fuel property differences at low, medium and high engine loads under different EGR dilution ratios. The test fuels offer a range of Cetane numbers from 28 to 54.2 and aromatic contents volume ratios from 19.4% to 46.6%. The experimental results of ignition delays are used to derive an ignition delay model modified from Arrhenius’ expression. Following the same format of Arrhenius’ equation, the model incorporates the pressure and temperature effects, and further includes the impacts of intake oxygen concentration, fuel Cetane number and aromatic contents volume ratio on the ignition delay.
Journal Article

Active Injection Control for Enabling Clean Combustion in Ethanol-Diesel Dual-Fuel Mode

2015-04-14
2015-01-0858
In this work, an active injection control strategy is developed for enabling clean and efficient combustion on an ethanol-diesel dual-fuel engine. The essence of this active injection control is the minimization of the diffusion burning and resultant emissions associated with the diesel injection while maintaining controllability over the ignition and combustion processes. A stand-alone injection bench is employed to characterize the rate of injection for the diesel injection events, and a regression model is established to describe the injection timings and injector delays. A new combustion control parameter is proposed to characterize the extent of diffusion burning on a cycle-to-cycle basis by comparing the modelled rate of diesel injection with the rate of heat release in real time. The test results show that the proposed parameter, compared with the traditional ignition delay, better correlates to the enabling of low NOx and low smoke combustion.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

2009-04-20
2009-01-0730
Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Technical Paper

An Enabling Study of Neat n-Butanol HCCI Combustion on a High Compression-ratio Diesel Engine

2015-03-10
2015-01-0001
This work investigates the benefits and challenges of enabling neat n-butanol HCCI combustion on a high compression ratio (18.2:1) diesel engine. Minor engine modifications are made to implement n-butanol port injection while other engine components are kept intact. The impacts of the fuel change, from diesel to n-butanol, are examined through steady-state engine tests with independent control of the intake boost and exhaust gas recirculation. As demonstrated by the test results, the HCCI combustion of a thoroughly premixed n-butanol/air lean mixture offers near-zero smoke and ultralow NOx emissions even without the use of exhaust gas recirculation and produces comparable engine efficiencies to those of conventional diesel high temperature combustion. The test results also manifest the control challenges of running a neat alcohol fuel in the HCCI combustion mode.
Technical Paper

An Experimental and Computational Investigation of Gasoline Compression Ignition Using Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Diesel Engine

2018-04-03
2018-01-0226
This research investigates the potential of gasoline compression ignition (GCI) to achieve low engine-out NOx emissions with high fuel efficiency in a heavy-duty diesel engine. The experimental work was conducted in a model year (MY) 2013 Cummins ISX15 heavy-duty diesel engine, covering a load range of 5 to 15 bar BMEP at 1375 rpm. The engine compression ratio (CR) was reduced from the production level of 18.9 to 15.7 without altering the combustion bowl design. In this work, four gasolines with research octane number (RON) ranging from 58 to 93 were studied. Overall, GCI operation resulted in enhanced premixed combustion, improved NOx-soot tradeoffs, and similar or moderately improved fuel efficiency compared to diesel combustion. A split fuel injection strategy was employed for the two lower reactivity gasolines (RON80 and RON93), while the RON60 and RON70 gasolines used a single fuel injection strategy.
Technical Paper

Characterization of Particulate Matter Emissions from Heavy-Duty Partially Premixed Compression Ignition with Gasoline-Range Fuels

2019-04-02
2019-01-1185
In this study, the compression ratio of a commercial 15L heavy-duty diesel engine was lowered and a split injection strategy was developed to promote partially premixed compression ignition (PPCI) combustion. Various low reactivity gasoline-range fuels were compared with ultra-low-sulfur diesel fuel (ULSD) for steady-state engine performance and emissions. Specially, particulate matter (PM) emissions were examined for their mass, size and number concentrations, and further characterized by organic/elemental carbon analysis, chemical speciation and thermogravimetric analysis. As more fuel-efficient PPCI combustion was promoted, a slight reduction in fuel consumption was observed for all gasoline-range fuels, which also had higher heating values than ULSD. Since mixing-controlled combustion dominated the latter part of the combustion process, hydrocarbon (HC) and carbon monoxide (CO) emissions were only slightly increased with the gasoline-range fuels.
Technical Paper

Clean Combustion in a Diesel Engine Using Direct Injection of Neat n-Butanol

2014-04-01
2014-01-1298
The study investigated the characteristics of the combustion, the emissions and the thermal efficiency of a direct injection diesel engine fuelled with neat n-butanol. Engine tests were conducted on a single cylinder four-stroke direct injection diesel engine. The engine ran at 6.5 bar IMEP and 1500 rpm engine speed. The intake pressure was boosted to 1.0 bar (gauge), and the injection pressure was controlled at 60 or 90 MPa. The injection timing and the exhaust gas recirculation (EGR) rate were adjusted to investigate the engine performance. The effect of the engine load on the engine performance was also investigated. The test results showed that the n-butanol fuel had significantly longer ignition delay than that of diesel fuel. n-Butanol generally led to a rapid heat release pattern in a short period, which resulted in an excessively high pressure rise rate. The pressure rise rate could be moderated by retarding the injection timing and lowering the injection pressure.
Technical Paper

Combustion Analysis of Esters of Soybean Oil in a Diesel Engine

1996-02-01
960765
The alkyl esters of plant oils and animal fats are receiving increasing attention as renewable fuels for diesel engines. These esters have come to be known as biodiesel. One objection to the use of the methyl and ethyl esters of soybean oil as a fuel in diesel engines is their high crystallization temperature. One solution to this problem is to use the isopropyl esters of soybean oil which have significantly lower crystallization temperatures. Another method to improve the cold flow properties of esters is to winterize them to sub-ambient temperature. This is accomplished by cooling the esters and filtering out the components that crystallize most readily. Previous work has shown that when methyl, isopropyl and winterized ester blends were compared with No.2 diesel fuel, the isopropyl and winterized methyl esters had at least the same emission reduction potential as the methyl esters, with similar engine performance.
Technical Paper

Comparison of In-Nozzle Flow Characteristics of Naphtha and N-Dodecane Fuels

2017-03-28
2017-01-0853
It is well known that in-nozzle flow behavior can significantly influence the near-nozzle spray formation and mixing that in turn affect engine performance and emissions. This in-nozzle flow behavior can, in turn, be significantly influenced by fuel properties. The goal of this study is to characterize the behavior of two different fuels, namely, a straight-run naphtha that has an anti-knock index of 58 (denoted as “Full-Range Naphtha”) and n-dodecane, in a simulated multi-hole common-rail diesel fuel injector. Simulations were carried out using a fully compressible multi-phase flow representation based on the mixture model assumption with the Volume of Fluid method. Our previous studies have shown that the characteristics of internal and near-nozzle flow are strongly related to needle motion in both the along- and off-axis directions.
Technical Paper

Computational Study of Combustion Optimization in a Heavy-Duty Diesel Engine Using In-Cylinder Blending of Gasoline and Diesel Fuels

2012-09-24
2012-01-1977
Low temperature combustion through in-cylinder blending of gasoline and diesel offers the potential to improve engine efficiency while yielding low engine-out soot and NOx emissions. This investigation utilized 3-D KIVA combustion simulation to guide the development of viable dual-fuel low temperature combustion strategies for heavy-duty applications. Model-based combustion optimization was performed at 1531rpm and 11 bar BMEP for a 12.4 L heavy-duty truck engine. Various engine operating parameters were explored through design of experiments (DoE). The parameters involved in the optimization process included compression ratio, air-fuel ratio, EGR rate, gasoline-to-diesel ratio, and diesel injection strategy (i.e., single-diesel injection vs. two-diesel injections, diesel injection timings, and the split ratio between two-diesel injections). Optimal cases showed near zero soot emissions and very low NOx emissions.
Journal Article

Conventional and Low Temperature Combustion Using Naphtha Fuels in a Multi-Cylinder Heavy-Duty Diesel Engine

2016-04-05
2016-01-0764
The regulatory requirements to lower both greenhouse gases and criteria pollutants from heavy duty engines are driving new perspectives on the interaction between fuels and engines. Fuels that lower the burden on engine manufacturers to reach these goals may be of particular interest. Naphtha, a fuel with a higher volatility than diesel, but with the ability to be burned under traditional mixing-controlled combustion conditions is one such fuel. The higher volatility promotes fuel-air mixing and when combined with its typically lower aromatic content, leads to reduced soot emissions when compared directly to diesel. Naphtha also has potential to be less energy-intensive at the refinery level, and its use in transportation applications can potentially reduce CO2 emissions on a well-to-wheels basis.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Technical Paper

Development of a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions

2018-04-03
2018-01-0304
The accurate modeling of fuel spray behavior under diesel engine conditions requires well-characterized boundary conditions. Among those conditions, the spray cone angle is important due to its impact on the spray mixing process, flame lift-off locations and subsequent soot formation. The spray cone angle is a highly dynamic variable, but existing correlations have been developed mainly for diesel fuels at quasi-steady state and relatively low injection pressures. The objective of this study was to develop spray cone angle correlations for both diesel and a light-end gasoline fuel over a wide range of diesel-engine operating conditions that are capable of capturing both the transient and quasi-steady state processes. Two important macroscopic characteristics of solid cone sprays, the spray cone angle and spray penetration, were measured using a single-hole heavy-duty injector using two fuels at diesel engine conditions in an optical constant volume vessel.
Technical Paper

Emission Performance of Low Cetane Naphtha as Drop-In Fuel on a Multi-Cylinder Heavy-Duty Diesel Engine and Aftertreatment System

2017-03-28
2017-01-1000
Greenhouse gas regulations and global economic growth are expected to drive a future demand shift towards diesel fuel in the transportation sector. This may create a market opportunity for cost-effective fuels in the light distillate range if they can be burned as efficiently and cleanly as diesel fuel. In this study, the emission performance of a low cetane number, low research octane number naphtha (CN 34, RON 56) was examined on a production 6-cylinder heavy-duty on-highway truck engine and aftertreatment system. Using only production hardware, both the engine-out and tailpipe emissions were examined during the heavy-duty emission testing cycles using naphtha and ultra-low-sulfur diesel (ULSD) fuels. Without any modifications to the hardware and software, the tailpipe emissions were comparable when using either naphtha or ULSD on the heavy duty test cycles.
Technical Paper

Empirical Study of Energy in Diesel Combustion Emissions with EGR Application

2011-08-30
2011-01-1817
Modern diesel engines were known for producing ultra-low levels of hydrogen and hydrocarbons. However, as emission control techniques such as exhaust gas recirculation (EGR) are implemented to meet stringent NOx standards, the resulting increase in partial-combustion products can be significant in quantity both as pollutants and sources of lost engine efficiency. In this work, a modern common-rail diesel engine was configured to investigate the EGR threshold for elevated carbon monoxide, hydrocarbon, and hydrogen emissions at fixed loads and fixed heat-release phasing. It is noted that increase in hydrocarbons, in particular light hydrocarbons (such as methane, ethylene, and acetylene) was concurrent with ultra-low NOx emissions. Hydrogen gas can be emitted in significant quantities with the application of very high EGR. Under ultra-low NOx production conditions for medium and high load conditions, the light hydrocarbon species can account for the majority of hydrocarbon emissions.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Technical Paper

Exhaust Hydrocarbon Speciation from a Single-Cylinder Compression Ignition Engine Operating with In-Cylinder Blending of Gasoline and Diesel Fuels

2012-04-16
2012-01-0683
Diesel aided by gasoline low temperature combustion offers low NOx and low soot emissions, and further provides the potential to expand engine load range and improve engine efficiency. The diesel-gasoline operation however yields high unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions. This study aims to correlate the chemical origins of the key hydrocarbon species detected in the engine exhaust under diesel-gasoline operation. It further aims to help develop strategies to lower the hydrocarbon emissions while retaining the low NOx, low soot, and efficiency benefits. A single-cylinder research engine was used to conduct the engine experiments at a constant engine load of 10 bar nIMEP with a fixed engine speed of 1600 rpm. Engine exhaust was sampled with a FTIR analyzer for speciation investigation.
Technical Paper

Fuel Burn Rate Control to Improve Load Capability of Neat n-Butanol Combustion in a Modern Diesel Engine

2016-10-17
2016-01-2301
This research work investigates the control strategies of fuel burn rate of neat n-butanol combustion to improve the engine load capability. Engine tests of homogeneous charge compression ignition (HCCI) and partially premixed combustion (PPC) with neat n-butanol show promising NOx and smoke emissions; however, the rapid burn rate of n-butanol results in excessive pressure rise rates and limits the engine load capability. A multi-event combustion strategy is developed to modulate the fuel burn rate of the combustion cycle and thus to reduce the otherwise high pressure rise rates at higher engine load levels. In the multi-event combustion strategy, the first combustion event is produced near TDC by the compression ignition of the port injected butanol that resembles the HCCI combustion; the second combustion event occurs near 7~12 degrees after TDC, which is produced by butanol direct injection (DI) after the first HCCI-like combustion event.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

2008-10-06
2008-01-2472
Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Technical Paper

Ignition Control of Gasoline-Diesel Dual Fuel Combustion

2012-09-24
2012-01-1972
The use of gasoline fuels in compression ignition engines, with or without diesel pilots, has shown encouraging progress in engine efficiency and emissions. The dual fuel combustion of gasoline-diesel offers the flexibility of modulating the cylinder charge reactivity, but an accurate and reliable control over the ignition in the dual fuel applications is more challenging than in classical engines. In this work, the gasoline-diesel dual fuel operation is investigated on a single cylinder research engine. The effects of the intake boost, exhaust gas recirculation (EGR) rates, diesel/gasoline ratio, and diesel injection timing are studied in regard to the ignition control. The results indicate that at low load, a diesel pilot can improve the cylinder charge reactivity and reduce emissions of incomplete combustion products.
X