Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 12130
Technical Paper

(Test Developed For) Classifying Valve Bridge Cracking Solutions in Cylinder Heads

1995-02-01
950029
The testing system developed will decrease the time and the costs involved in evaluating cylinder head valve bridge designs. The test uses actual data generated from engine testing to recreate the valve bridge cracks that occur during dynamometer and vehicle testing. This paper focuses on the system description, the test development, design modifications, and the test results obtained. Testing shows that this method correctly separates valve bridge designs by test cycle life using statistical methods. It is a cost effective and timely alternative to dynamometer testing.
Collection

0-D and 1-D Modeling and Numerics, 2017

2017-03-28
Papers in the session cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; and system level models for vehicle fuel economy and emissions predictions.
Collection

0-D and 1-D Modeling and Numerics, 2018

2018-04-03
Papers in the session cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; and system level models for vehicle fuel economy and emissions predictions.
Technical Paper

0D/1D Turbulent Combustion Model Assessment from an Ultra-Lean Spark Ignition Engine

2019-03-25
2019-01-1409
This paper focuses on an assessment of predictive combustion model using a 0D/1D simulation tool under high load, different excess air ratio λ , and different combustion stabilities (based on coefficient of variation of indicated mean effective pressure COVimep). To consider that, crank angle resolved data of experimental pressure of 500 cycles are recorded under engine speed 1000 RPM and 2000 RPM, wide-open throttle, and λ=1.0, 1.42, 1.7, and 2.0. Firstly, model calibration is conducted using 18 cases at 2000 RPM using 500 cycle-averaged in-cylinder pressure to find optimized model constants. Then, the model constants are unchanged for other cases. Next, different cycle-averaged pressure data are used as inputs in the simulation based on the COVimep for studying sensitivity of the turbulent model constants. The simulation is conducted using 1D simulation software GT-Power.
Technical Paper

0D/3D Simulations of Combustion in Gasoline Engines Operated with Multiple Spark Plug Technology

2015-04-14
2015-01-1243
A simulation method is presented for the analysis of combustion in spark ignition (SI) engines operated at elevated exhaust gas recirculation (EGR) level and employing multiple spark plug technology. The modeling is based on a zero-dimensional (0D) stochastic reactor model for SI engines (SI-SRM). The model is built on a probability density function (PDF) approach for turbulent reactive flows that enables for detailed chemistry consideration. Calculations were carried out for one, two, and three spark plugs. Capability of the SI-SRM to simulate engines with multiple spark plug (multiple ignitions) systems has been verified by comparison to the results from a three-dimensional (3D) computational fluid dynamics (CFD) model. Numerical simulations were carried for part load operating points with 12.5%, 20%, and 25% of EGR. At high load, the engine was operated at knock limit with 0%, and 20% of EGR and different inlet valve closure timing.
Technical Paper

1-D Model of Roots Type Supercharger

2013-04-08
2013-01-0927
This paper introduces research work on 1-D model of Roots type supercharger with helical gears using 1-D simulation tool. Today, passenger car engine design follows approach of downsizing and the reduction of number of engine cylinders. Superchargers alone or their combination with turbochargers can fulfill low-end demands on engine torque for such engines. Moreover, low temperature combustion of lean mixture at low engine loads becomes popular (HCCI, PCCI) requiring high boost pressure of EGR/fresh air mixture at low exhaust gas temperature, which poses too high demands on turbocharger efficiency. The main objective of this paper is to describe Roots charger features and to amend Roots charger design.
Technical Paper

1-D Modeling and Experimental Evaluation of Secondary Air Injection System for a Small SI Engine

2013-10-15
2013-32-9091
In order to comply with the existing emission norms of BSIII in India or EURO III and beyond that also, it is not sufficient to use the catalytic converter technology alone over the wide range of engine operating maps. Different studies across the world have proved that the cost, drivability, operating range against AFR, heat dissipation rate characteristics of catalytic converter limit their use in startup and idling conditions. One common way to tackle this condition is to use the Secondary Air Injection (SAI) system. In this system, small amount of air is injected after the exhaust port to initiate the thermal oxidation of gases. The right amount of air injected at the right time and at right location will reduce the emission by 37-90%. In the following study, SI engine vehicle with single cylinder, 160 cc and having carburetor is used as a test vehicle to evaluate the performance of SAI. The SAI system is modeled in AVL BOOST software and validated against the experimental data.
Technical Paper

1-D Numerical Model of a Spark Ignition Engine Fueled with Methanol for Off-Grid Charging Stations

2023-08-28
2023-24-0098
The road transportation sector is undergoing significant changes, and new green scenarios for sustainable mobility are being proposed. In this context, a diversification of the vehicles’ propulsion, based on electric powertrains and/or alternative fuels and technological improvements of the electric vehicles charging stations, are necessary to reduce greenhouse gas emissions. The adoption of internal combustion engines operating with alternative fuels, like methanol, may represent a viable solution for overcoming the limitations of actual grid connected charging infrastructure, giving the possibility to realize off-grid charging stations. This work aims, therefore, at investigating this last aspect, by evaluating the performance of an internal combustion engine fueled with methanol for stationary applications, in order to fulfill the potential demand of an on off-grid charging station.
Journal Article

1-D Simulation Study of Divided Exhaust Period for a Highly Downsized Turbocharged SI Engine - Scavenge Valve Optimization

2014-04-01
2014-01-1656
Fuel efficiency and torque performance are two major challenges for highly downsized turbocharged engines. However, the inherent characteristics of the turbocharged SI engine such as negative PMEP, knock sensitivity and poor transient performance significantly limit its maximum potential. Conventional ways of improving the problems above normally concentrate solely on the engine side or turbocharger side leaving the exhaust manifold in between ignored. This paper investigates this neglected area by highlighting a novel means of gas exchange process. Divided Exhaust Period (DEP) is an alternative way of accomplishing the gas exchange process in turbocharged engines. The DEP concept engine features two exhaust valves but with separated function. The blow-down valve acts like a traditional turbocharged exhaust valve to evacuate the first portion of the exhaust gas to the turbine.
Technical Paper

10 KWe Dual-Mode Space Nuclear Power System for Military and Scientific Applications

1992-08-03
929072
A 10 KWe dual-mode space power system concept has been identified which is based on INEL's Small Externally-fueled Heat Pipe Thermionic Reactor (SEHPTR) concept. This power system will enhance user capabilities by providing reliable electric power and by providing two propulsion systems; electric power for an arc-jet electric propulsion system and direct thrust by heating hydrogen propellant inside the reactor. The low thrust electric thrusters allow efficient station keeping and long-term maneuvering. The direct thrust capability can provide tens of pounds of thrust at a specific impulse of around 730 seconds for maneuvers that must be performed more rapidly. The direct thrust allows the nuclear power system to move a payload from Low Earth Orbit (LEO) to Geosynchronous Earth Orbit (GEO) in less than one month using approximately half the propellant of a cryogenic chemical stage.
Technical Paper

100 Hour Endurance Testing of a High Output Adiabatic Diesel Engine

1994-03-01
940951
An advanced low heat rejection engine concept has successfully completed a 100 hour endurance test. The combustion chamber components were insulated with thermal barrier coatings. The engine components included a titanium piston, titanium headface plate, titanium cylinder liner insert, M2 steel valve guides and monolithic zirconia valve seat inserts. The tribological system was composed of a ceramic chrome oxide coated cylinder liner, chrome carbide coated piston rings and an advanced polyolester class lubricant. The top piston compression ring Included a novel design feature to provide self-cleaning of ring groove lubricant deposits to prevent ring face scuffing. The prototype test engine demonstrated 52 percent reduction in radiator heat rejection with reduced intake air aftercooling and strategic forced oil cooling.
Technical Paper

100% LPG Long Haul Truck Conversion - Economy and Environmental Benefits

2012-09-24
2012-01-1983
Advanced Vehicle Technologies (AVT), a Ballarat Australia based company, has developed the World's first diesel to 100% LPG conversion for heavy haul trucks. There is no diesel required or utilized on the trucks. The engine is converted with minimal changes into a spark ignition engine with equivalent power and torque of the diesel. The patented technology is now deployed in 2 Mercedes Actros trucks. The power output in engine dynamometer testing exceeds that of the diesel (in excess of 370 kW power and 2700 Nm torque). In on-road application the power curve is matched to the diesel specifications to avoid potential downstream power-train stress. Testing at the Department of Transport Energy & Infrastructure, Regency Park, SA have shown the Euro 3 truck converted to LPG is between Euro 4 and Euro 5 NOx levels, CO2 levels 10% better than diesel on DT80 test and about even with diesel on CUEDC tests.
Technical Paper

15 Combustion Characteristics of an Improved Design of a Stratified Charge Spark Ignition Engine

2002-10-29
2002-32-1784
The characteristics of the combustion process in an improved design of a novel spark ignition engine studied by means of Computational Fluid Dynamics are presented. The engine is designed to work at low average combustion temperatures to achieve very low NOx emissions. The engine is a two-stroke, two piston in-line engine. The main combustion occurs in four combustion pre-chambers that have an annular shape with a nozzle on the side facing the cylinder. Fuel is directly injected into the pre-chambers by using high-pressure fuel injectors. A progressive burning process is expected to keep the flame inside the pre-chambers while the fast ejection of combustion products should produce effective mixing with the cold air in the cylinder. This fast dilution should guarantee a temperature drop of the combustion products thus reducing the formation of NOx via a thermal path.
Technical Paper

15 Years of Transfer Path Analysis VINS in the Vehicle NVH Development - Selected Results

2014-06-30
2014-01-2047
Transfer path analysis is a powerful tool to support the vehicle NVH development. On the one hand it is a fast method to gain an overview of the complex interplay in the vehicle noise generation process. On the other hand it can be used to identify critical noise paths and vehicle components responsible for specific noise phenomena. FEV has developed several tools, which are adapted to the considered noise phenomena: Powertrain induced interior noise and vibration is analyzed by VINS (Vehicle Interior Noise Simulation), which allows the deduction of improvement measures fast enough for application in the accelerated vehicle development process. Further on vehicle/powertrain combinations not realized in hardware can be evaluated by virtual installation of the powertrain in the vehicle, which is especially interesting in the context of engine downsizing from four to three or six to four cylinders.
Technical Paper

16 Optimisation of a Stratified Charge Strategy for a Direct Injected Two-Stroke Engine

2002-10-29
2002-32-1785
Direct fuel injection is becoming mandatory in two-stroke S.I. engines, since it prevents one of the major problems of these engines, that is fuel loss from the exhaust port. Another important problem is combustion irregularity at light loads, due to excessive presence of residual gas in the charge, and can be solved by charge stratification. High-pressure liquid fuel injection is able to control the mixing process inside the cylinder for getting either stratified charge at partial loads or quasi-stoichiometric conditions, as it is required at full load. This paper shows the development of this solution for a small engine for moped and light scooter, using numeric and experimental tools. In order to obtain the best charge characteristics at every load and engine speed, different combustion chambers have been conceived and studied, examining the effects of combustion chamber geometry, together with injector position and injection timing
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Technical Paper

1D Modeling of a High-Performance Engine Fueled with H2 And Equipped with A Low NOx Aftertreatment Device

2024-06-12
2024-37-0009
Hydrogen engines are currently considered as a viable solution to preserve the internal combustion engine as a power unit for vehicle propulsion. In particular, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations due to the reduced emission levels and high thermodynamic efficiency. This strategy is suitable for the purpose of passenger car applications and cannot be tailored in the field of high performance engine, where the air mass delivered would require oversized turbocharging systems or more complex charging solutions. For this reason, the range of stoichiometric feeding condition is explored in the high performance engine, leading to the consequent issue of abatement of pollutant emissions. In this work a 1D model will be applied to the modeling of a V8 engine fueled with DI of hydrogen. The engine has been derived by a gasoline configuration and adapted to hydrogen in such a way to keep the same performance.
Technical Paper

1D Modelling of Reactive Fluid Dynamics, Cold Start Behavior of Exhaust Systems

2006-04-03
2006-01-1544
The introduction of more stringent standards for engine emissions requires a steady development of exhaust gas aftertreatment in addition to an optimized cylinder combustion. The reduction of the cold start phase can help significantly to lower cycle emissions. With the goal of optimizing the overall emission performance this study presents a comprehensive simulation approach. A well established 1D gas dynamics and engine simulation model is extended by three key features. These are models for combustion and pollutant production in the cylinder, models for the pollutant conversion in a catalyst, and a general species transport model. This allows to consider an arbitrary number of chemical species and reactions in the entire system.
Journal Article

1D Numerical and Experimental Investigations of an Ultralean Pre-Chamber Engine

2019-11-19
Abstract In recent years, lean-burn gasoline Spark-Ignition (SI) engines have been a major subject of investigations. With this solution, in fact, it is possible to simultaneously reduce NOx raw emissions and fuel consumption due to decreased heat losses, higher thermodynamic efficiency, and enhanced knock resistance. However, the real applicability of this technique is strongly limited by the increase in cyclic variation and the occurrence of misfire, which are typical for the combustion of homogeneous lean air/fuel mixtures. The employment of a Pre-Chamber (PC), in which the combustion begins before proceeding in the main combustion chamber, has already shown the capability of significantly extending the lean-burn limit. In this work, the potential of an ultralean PC SI engine for a decisive improvement of the thermal efficiency is presented by means of numerical and experimental analyses.
Technical Paper

1D Thermo-Fluid Dynamic Simulation of a High Performance Lamborghini V12 S.I. Engine

2005-04-11
2005-01-0692
This paper describes the development and application of the 1D thermo-fluid dynamic research code GASDYN to the simulation of a Lamborghini 12 cylinder, V 60°, 6.2 L automotive S.I. engine. The model has been adopted to carry out an integrated simulation (thermodynamic, fluid dynamic and chemical) of the engine coupled to its intake and exhaust manifolds, in order to predict not only the wave motion in the ducts and its influence on the cylinder gas exchange process, but also the in-cylinder combustion process and the pollutant emission concentration along the exhaust system. The gas composition in the exhaust pipe system is dictated by the cylinder discharge process, after the calculation of the combustion via a thermodynamic multi-zone model, based on a “fractal geometry” approach.
X