Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Technical Paper

1D Thermo-Fluid Dynamic Modelling of a S.I. Engine Exhaust System for the Prediction of Warm-Up and Emission Conversion during a NEDC Cycle

2005-09-11
2005-24-073
This work describes an experimental and numerical investigation of the thermal transient of i.c. engine exhaust systems. A prototype of exhaust system has been investigated during a NEDC cycle in two different configurations. Firstly an uncoated catalyst has been adopted to consider only the effect of the gas-wall heat transfer. The measurements have been repeated on the same exhaust system equipped with a coated catalyst to point out the contribution of the chemical reactions to the thermal transient of the system. The measured values have been compared to the predicted results carried out with a 1D thermo fluid dynamic code, developed in-house to account for the thermal transient of the system and the chemical reactions occurring in the catalyst.
Technical Paper

1D Thermo-Fluid Dynamic Simulation of a High Performance Lamborghini V12 S.I. Engine

2005-04-11
2005-01-0692
This paper describes the development and application of the 1D thermo-fluid dynamic research code GASDYN to the simulation of a Lamborghini 12 cylinder, V 60°, 6.2 L automotive S.I. engine. The model has been adopted to carry out an integrated simulation (thermodynamic, fluid dynamic and chemical) of the engine coupled to its intake and exhaust manifolds, in order to predict not only the wave motion in the ducts and its influence on the cylinder gas exchange process, but also the in-cylinder combustion process and the pollutant emission concentration along the exhaust system. The gas composition in the exhaust pipe system is dictated by the cylinder discharge process, after the calculation of the combustion via a thermodynamic multi-zone model, based on a “fractal geometry” approach.
Technical Paper

1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of S.I. Engines: Predictions and Experiments

2001-03-05
2001-01-0939
This paper describes some recent advances of the research work concerning the 1D fluid dynamic modeling of unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN developed in previous work has been further enhanced to enable the simulation of the catalyst. The main chemical reactions occurring in the wash-coat have been accounted in the model, considering the mass transfer between gas and solid phase. The oxidation of CO, C3H6, C3H8, H2 and reduction of NO, the steam-reforming reactions of C3H6, C3H8, the water-gas shift reaction of CO have been considered. Moreover, an oxygen-storage sub-model has been introduced, to account for the behavior of Cerium oxides. A detailed thermal model of the converter takes into account the heat released by the exothermic reactions as a source term in the heat transfer equations. The influence of the insulating mat is accounted.
Technical Paper

A 1D Unsteady Thermo-Fluid Dynamic Approach for the Simulation of the Hydrodynamics of Diesel Particulate Filters

2006-04-03
2006-01-0262
A new approach for the fluid-dynamic simulation of the Diesel Particulate Filters (DPF) has been developed. A mathematical model has been formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy for unsteady, compressible and reacting flows, in order to predict the hydrodynamic characteristics of the DPF and to study the soot deposition mechanism. In particular, the mass conservation equations have been solved for each chemical component considered, and the advection of information concerning the chemical composition of the gas has been figured out for each computational mesh. A sub-model for the prediction of the soot cake formation has been developed and predictions of soot deposition profiles have been calculated for different loading conditions. The results of the simulations, namely the calculated pressure drop, have been compared with the experimental data.
Journal Article

A Coupled 1D-multiD Nonlinear Simulation of I.C. Engine Silencers with Perforates and Sound-Absorbing Material

2009-04-20
2009-01-0305
Nowadays a great attention is paid to the level and quality of noise radiated from the tailpipe end of intake and exhaust systems, to control the gas dynamic noise emitted by the engine as well as the characteristics of the cabin interior sound. The muffler geometry can be optimized consequently, to attenuate or remark certain spectral components of the engine noise, according to the result expected. Evidently the design of complex silencing systems is a time-consuming operation, which must be carried out by means of concurrent experimental measurements and numerical simulations. In particular, 1D and multiD linear/non-linear simulation codes can be applied to predict the silencer behavior in the time and frequency domain. This paper describes the development of a 1D-multiD integrated approach for the simulation of complex muffler configurations such as reverse chambers with inlet and outlet pipe extensions and perforated silencers with the addition of sound absorbing material.
Technical Paper

A Theoretical Comparison of Various VVA Systems for Performance and Emission Improvements of SI-Engines

2001-03-05
2001-01-0670
A wide experimental investigation on a 16 valves, 1242 cm3 SI-engine is reported. Experimental data were collected in correspondence with about 250 different operating conditions of the engine. This allowed to deeply assess the accuracy of a simulation model (1Dime code), developed by the authors, based on a one-dimensional computation of the gas flow in the manifolds, and on a quasi-dimensional fractal approach for combustion simulation. The model is then employed to theoretically verify the advantages that can be exploited from the adoption of various VVT (Variable Valve Timing) or VVA (Variable Valve Actuation) systems, including those realizing a throttle-less operation of the engine. The gains predicted in terms of torque profile at WOT, and of BSFC or NOx emissions at part load are quantified and discussed.
Technical Paper

An Integrated Simulation Model for the Prediction of GDI Engine Cylinder Emissions and Exhaust After-Treatment System Performance

2004-03-08
2004-01-0043
The paper describes the development and validation of a quasi-dimensional multi-zone combustion model for Gasoline Direct Injection engines. The model has been embedded in the 1D thermo-fluid-dynamic code for the simulation of the whole engine system named GASDYN and developed by the authors [1, 2 and 3]. The GDI engine combustion model solves mass, energy and species equations using a 4th order Runge-Kutta integration method; the fuel spray is initially divided into a number of zones fixed regardless of the injected amount and the time step, considering the following break-up, droplet evaporation and air entrainment in each single zone. Experimental correlations have been used for the spray penetration and spatial information. Once the ignition begins it is assumed that the flame propagates spherically, evaluating its velocity by means of a fractal combustion approach and considering the local air-fuel ratio, which is the result of the spray evolution within the combustion chamber.
Technical Paper

An Integrated Simulation Model for the Prediction of S.I. Engine Cylinder Emissions and Exhaust After-Treatment System Performance

2001-09-23
2001-24-0045
The calculation of the main pollutant emissions discharged into the atmosphere by means of numerical codes requires the development of integrated models, including either an accurate thermodynamic in-cylinder analysis and the simulation of reacting unsteady flows in the duct system. This paper describes the main features of the numerical model GASDYN developed by the authors, which in the last years has been enhanced in order to achieve this kind of objectives. A multi-zone approach has been adopted to predict the combustion process in s.i. engines, whereas the so called super-extended Zeldovich mechanism has been introduced to perform a more detailed description of all the chemical reactions involved in the NOx production process. The simulation of the reacting flows in the exhaust manifold has been completed by the introduction of further enhancements to predict the chemical behavior of gases inside the catalytic converters.
Technical Paper

Benefits of Using a Real-Time Engine Model During Engine ECU Development

2003-03-03
2003-01-1049
In the world of automotive control and electronics, technology is the driving force behind every decrease in product cycle time. Cost and time to market are crucial factors to ensure continued success in a competitive world where products must be tailored precisely to the customers' needs. To achieve these goals, co-operation between suppliers and vehicle manufacturers need to reach unprecedented levels through the use of common tools. This paper aims to show the competitive edge that may be derived from using current state-of-the-art control development tools and methodologies. The tools shift the emphasis away from expensive on-vehicle work to lever the power of simulation and engine emulation in the development of a prototype EMS (Engine Management System) controller.
Technical Paper

Development and Experimental Validation of a Combustion Model with Detailed Chemistry for Knock Predictions

2007-04-16
2007-01-0938
Aim of this work is to develop a general purpose model for combustion and knocking prediction in SI engines, by coupling a thermo-fluid dynamic model for engine simulation with a general detailed kinetic scheme, including the low-temperature oxidation mechanism, for the prediction of the auto-ignition behavior of hydrocarbons. A quasi-D approach is used to describe the in-cylinder thermodynamic processes, applying the conservation of mass and energy over the cylinder volume, modeled as a single open system. The complex chemistry model has been embedded into the code, by using the same integration algorithm for the conservation equations and the reacting species, and taking into account their mutual interaction in the energy balance. A flame area evolution predictive approach is used to evaluate the turbulent flame front propagation as function of the engine operating parameters.
Technical Paper

Development and Identification of Phenomenological Models for Combustion and Emissions of Common-Rail Multi-Jet Diesel Engines

2004-06-08
2004-01-1877
The paper deals with the development of a system of phenomenological models for the simulation of combustion and NOx-Soot emissions in Common-Rail Multi-Jet Diesel engines. The system has been built by following a modular modeling approach and is suitable for the implementation in the framework of Hardware In the Loop (HIL) ECU rapid prototyping. A single-zone model simulates the ignition delay and the combustion during a sequence of pilot, pre and main fuel injections for a production 1,9 liters Diesel engine equipped with High Pressure Injection system, electronically controlled. The heat release model is based on the synthetic description of both premixed and diffusive combustion. The Zeldovich mechanism has been used to simulate the formation of NO emissions while the Soot model is based on the approach proposed by Hiroyasu. The models have been tested vs. a wide set of experimental data with a good accuracy in predicting pressure cycle and heat release.
Technical Paper

Development of a Multi-Dimensional Parallel Solver for Full-Scale DPF Modeling in OpenFOAM®

2009-06-15
2009-01-1965
A new fast and efficient parallel numerical solver for reacting and compressible flows through porous media has been developed in the OpenFOAM® (Open Field Operation and Manipulation) CFD Toolbox. With respect to the macroscopic model for porous media originally available in OpenFOAM®, a different mathematical approach has been followed: the new implemented solver makes use of the physical normal components resulting from the velocity expansion in the unit orthogonal vector basis to compute the Darcy pressure drop across the porous medium. Also, an additional sink term to account for the increased flow friction over the porous wall has been included into the momentum equation. In the new solver, the pressure correction equation is still able to achieve a faster convergency at very low permeability of the medium, also when it is associated with grid non-orthogonality.
Technical Paper

Development of an Open Source C++ Toolkit for Full-Scale Diesel Particulate Filter Simulation

2009-09-13
2009-24-0137
Multi-dimensional simulation of hydrodynamics in full-scale wall-flow Diesel Particulate Filters by GpenFQAM®, an open-source C++ object-oriented CFD code, is presented. A new fast and efficient parallel numerical solver has been developed by authors to simulate flows through porous media and it has been tested for the simulation of diesel particulate filters; errors caused by discretization of filter monoliths have been corrected by the formulation of a correction factor, that has been included in the solver. A set of experimental data, available from literature, has been used for code validation.
Technical Paper

Experimental Analysis and 1D Thermo-Fluid Dynamic Simulation of a High Performance Lamborghini V10 S.I. Engine

2005-09-11
2005-24-081
This paper describes some recent advances in the field of I.C. engine modeling and simulation, concerning the development and application of a 1D thermo-fluid dynamic research code. An extensive experimental analysis has been concurrently carried out, to support the development and validation of the simulation code. A four-stroke, 10V-cylinder, 5.0 liters automotive S.I. engine has been modeled, in order to predict not only the wave motion in the system and its influence on the cylinder gas exchange process, but also the in-cylinder pressure to get a good prediction of pollutant emission concentration along the exhaust system. The gas composition in the exhaust pipe system is dictated by the cylinder discharge process, after the calculation of the combustion process via a thermodynamic multi-zone model, based on a fractal approach to predict the turbulent combustion.
Technical Paper

Fluid Dynamic Modeling of the Gas Flow with Chemical Specie Transport through the Exhaust Manifold of a Four Cylinder SI Engine

1999-03-01
1999-01-0557
The paper describes the 1-D fluid dynamic modeling of unsteady flows with chemical specie tracking in the ducts of a four-cylinder s.i. automotive engine, to predict the composition of the exhaust gas reaching the catalyst inlet. A comprehensive simulation model, based on classical and innovative numerical techniques for the solution of the governing equations, has been developed. The non-traditional shock-capturing CE-SE (Conservation Element-Solution Element) method has been extended to deal with the propagation of chemical species. A comparison of the MacCormack method plus FCT or TVD algorithms with the CE-SE method has pointed out the superiority of the latter scheme in the propagation of contact discontinuities. A realistic composition of the exhaust products in the cylinder, evaluated by a two-zone combustion model including emission sub-models, has been imposed at the opening of the exhaust valve, considering the effect of short-circuit of air during valve overlap.
Technical Paper

Hardware In the Loop Validation of the PIAGGIO MP3

2007-04-16
2007-01-0965
Recently Piaggio developed a new scooter equipped with a revolutionary front suspension electronically controlled locking. It was critical to test and validate the design of this new control system before deployment to ensure high customer satisfaction and reducing warranty costs. Test on a HIL platform accelerates the verification and validation process. A validated HIL set-up, being a repeatable and reliable test platform with a short turnaround time is ideal for developing standardized processes for Electronic Control Unit (ECU) testing and calibration. With shortening life cycles in the motorcycle industry, HIL technology is rapidly gaining acceptance not only in conventional vehicle programs, but also challenging vehicle programs. The development of control strategies for MP3 ECU has benefited from HIL-based testing. It has proven to be an efficient tool for software strategy development, implementation and validation.
Technical Paper

Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems

2007-04-16
2007-01-0495
This work describes the development, application and coupling of two different numerical codes, respectively based on a 1D (Gasdyn) and 3D (OpenFOAM) schematization of the geometrical domain. They have been adopted for the prediction of the wave motion inside the intake and the exhaust systems of internal combustion engines. The HLLC Riemann solver has been implemented both in the CFD and the 1D codes to solve the Euler system of equations, in order to operate with the same solver on the different calculation domains. Moreover, the HLLC solver has been applied to treat the boundary conditions at the interface between the two domains, in such a way to allow the propagation of flow disuniformities through the domain interface, without affecting the solution accuracy. The hybrid approach was used for the simulation of two different test cases: a complex 5 into 1 pipe junction of a high performance V10 engine and a Venturi tube plus a Helmholtz resonator of a single cylinder S.I. engine.
Technical Paper

Kinetic Modeling of Knock Properties in Internal Combustion Engines

2006-10-16
2006-01-3239
This work presents a general model for the prediction of octane numbers and knock propensity of different fuels in SI engines. A detailed kinetic scheme of hydrocarbon oxidation is coupled with a two zone, 1-D thermo-fluid dynamic simulation code (GASDYN) [1]. The validation of the kinetic scheme is discussed on the basis of recent experimental measurements. CFR engine simulations for RON and MON evaluation are presented first to demonstrate the capabilities of the coupled model. The model is then used to compare the knock propensity of a gasoline “surrogate” (a pure hydrocarbon mixture) and PRFs in a current commercial engine, resulting in a simulation of “real world” octane number determination, such as Bench Octane Number (BON). The simulation results agree qualitatively with typical experimental trends.
X