Refine Your Search

Topic

Author

Search Results

Technical Paper

Automated Inspection Utilizing Deep Learning for Polished Skin

2024-03-05
2024-01-1939
This technical paper reports the development of an automatic defect detector utilizing deep learning for “polished skins”. Materials with a “polished skin” are used in the fabrication of the external plates of commercial airplanes. The polished skin is obtained by polishing the surface of an aluminum clad material, and they are visually inspected, which places a significant burden on inspectors to find minute defects on relatively large pieces of material. Automated inspection of these skins is made more difficult because the material has a mirror finished surface. Defects are broadly classified into three categories: dents, bumps, and discolorations. Therefore, a defect detector must be able to detect these types of defects and measure the defects’ surface profile. This technical paper presents details related to the design and manufacture of an inexpensive automated defect detector that demonstrates a sufficiently high level of performance.
Technical Paper

Research of Vehicle Behavior Classification of Off-Road Motorcycles Using Gradient Boosting

2023-10-24
2023-01-1817
Machine learning is used for the research and development of ITS services and the rider assistance for on-road motorcycle racing. Meanwhile, rider assistance systems for off-road motorcycles have yet to be developed, partly due to the complexity of the measurement conditions, as described in the previous paper. This research aims to create a reliable AI which is capable of classifying typical jump behaviors in off-road riding by machine learning to create a rider assistance system for off-road motorcycles. Motorcycle manufacturers and certain research institutes use motion sensors to collect data, but the data is obtained from a limited number of vehicles and riders. The creation of a rider assistance system requires a large amount of validation data. Furthermore, it is desirable to achieve the target with data that can be measured in mass-produced vehicles, which will make it possible to collect data even from general users.
Technical Paper

Development of a Lightweight One-Piece Aluminum Casting Swingarms

2023-10-24
2023-01-1808
Fuel-efficient motorcycles are essential for energy conservation and environmental load reduction. To achieve low fuel consumption, reducing the weight of the body parts of the motorcycle is important. This study focuses on reducing the weight of the swingarms, a relatively heavy body part. However, reducing the weight of swingarms is challenging owing to the low flexibility in their shape because swingarms are conventionally made of multiple pipes and casting parts welded together. Therefore, we utilized the integral casting technology and examined a new light weight shape. However, creating a new shape manually is difficult. Thus, we examined a new shape using the shape optimization technology, which has been recently used in additive manufacturing. The shapes fabricated using this technology are generally complex and difficult to manufacture by casting. Therefore, we adjusted optimization condition with casting.
Technical Paper

Application of Participation Factor Focusing on Response at Specific Part for Vibration Evaluation of Motorcycle Frame

2022-01-09
2022-32-0037
In this study, we efficiently predict the vibration response of a design shape at a low computational cost in the early development stage, select design proposals with good characteristics from many proposals devised by the designer at the early stage, and forward them to the next stage to achieve the front-loading of development while increasing product value. The application of participation factor (PF) focusing on the response at a specific part for vibration evaluation of a motorcycle frame is described. To reduce the motorcycle frame vibration, an eigenvalue analysis was performed, and appropriate design change proposals were efficiently selected using partial participation factor (PPF), an index showing the relevance of vibration of specific parts or positions. Using the PPF, we extracted which vibration modes considerably contribute to the vibration response of the part of interest.
Technical Paper

Improved Briles Rivet Forming Using High-Speed Force Feedback and Improved Die Geometry

2019-03-19
2019-01-1377
Electroimpact and Kawasaki Heavy Industries (KHI) have produced a new riveting process for the forming of Briles type rivets in Boeing 777 and 777X fuselage assemblies. The Briles rivet is typically used for fuselage assembly and is unique in that it has a self-sealing head. Unlike conventional headed rivets such as the NAS1079, this fastener does not require aircraft sealant under the head to be fluid tight. This unique fastener makes for a difficult fastening process due to the fact that interference must be maintained between the hole and fastener shank, as well as along the sides of the fastener head. Common issues with the formed fasteners include gapping under the fastener head and along the shank of the fastener. Electroimpact has employed a host of different technologies to combat these issues with Briles fastening. First, Electroimpact’s patented “Air Gap” system allows the machine to confirm that the head of the rivet is fully seated in the countersink prior to forming.
Technical Paper

Development of Fatigue Durability Evaluation Technology for Motorcycle Frame

2015-11-17
2015-32-0811
In the development of a motorcycle frame, the balance between high performance and reliability and a short development period are important. In this study, a fatigue durability evaluation technique for a motorcycle frame was developed to enable highly accurate development within a short period of time. Furthermore, we developed a shaking table excitation system as a means to supplement the road test.
Technical Paper

Refill Friction Spot Joining for Aerospace Application

2015-09-15
2015-01-2614
In the modern aircraft manufacturing, the cost reduction, the manufacturing time reduction, and the weight saving of aircraft are strongly demanded. The Refill Friction Spot Joining [1,2](FSJ, in other words FSSW, Friction Stir Spot Welding), which is one of innovative solid-state joining methodologies based on the Friction Stir Welding[3], is a promising technology that can replace rivets and fasteners. This technology is expected to offer cost reduction and weight saving for the aircraft manufacturing. In this study, to make stronger and reliable joints, the shoulder-plunging process of Refill FSJ was employed. The weldability of the Alodine or Chromic Acid Anodize coated materials along with a faying-surface sealant was investigated. The joint properties, such as tensile shear strengths and corrosion resistance, were evaluated.
Technical Paper

The Feasibility Study of a Design Concept of Electric Motorcycle

2015-09-01
2015-01-1775
As for automobile, the mass production period of Electric Vehicle(EV) has begun by the rapid progress of the battery performance. But for EV-Motorcycle(MC), it is limited for the venture companies' releases. The design and evaluation methodologies are not yet established or standardized so far. This paper provides the practical and the experimental examples. To study the feasibility of EV-MC, we developed the prototypes in the present technical and suppliers' parts environments, and evaluated them by the practical view of the MC usage. The developed EV-MC has the equivalent driving performance of the 250cc internal combustion engine(ICE)-MC and a cruising range of 100km in normal use.
Technical Paper

Development of Alternative Fuel Content Estimation Method and Apparatus

2013-10-15
2013-32-9156
Environmental and energy independence concerns have stimulated the development of an apparatus for alternative fuel. It estimates the ethanol content in the fuel in order to perform a reliable combustion. One means for measuring the ratio of ethanol present in the fuel tank is to provide a fuel composition sensor. However, such a fuel composition sensor increases the number of parts and causes the cost issues in motorcycles. We used an oxygen sensor disposed to the exhaust pipe to estimate the ethanol content without increasing the parts and costs. The common method of the estimation is the oxygen feed-back in stoichiometric air fuel ratio condition. Unfortunately, two-wheel vehicles are often operated in rich conditions and have less chance of stoichiometric condition. In this study, we used a one-liter four-cylinder motorcycle, and have developed a practical method to estimate the ethanol content even in the not-stoichiometric condition.
Technical Paper

Development of Intake Sound Control Technique for Sports-Type Motorcycles

2013-10-15
2013-32-9164
Engine sound is one of the most important factors when selecting a motorcycle from various models. Therefore, it is necessary to create an appealing sound in the rider's ears in addition to complying with noise regulations. In this paper, how we control intake sound is described through the study of a sports-type motorcycle with an inline 4 cylinder engine. To control intake sound, both intake pressure pulsations generated by the engine and acoustic transfer characteristics of the intake system are important. It is shown by unsteady-state one-dimensional computational fluid dynamics analysis that specifications of the exhaust system affect intake pressure pulsations across the valve overlap period. Therefore, to emphasize high order components of the engine revolutions in the intake sound, for example, modifying the layout of the exhaust muffler is effective.
Technical Paper

Evaluation Method for Motorcycle Mode Fuel Consumption using a One-Dimensional Engine Simulation

2013-10-15
2013-32-9162
Motorcycle has broad spectrum of developments, such as excellent engine performance, low fuel consumption, emission and noise reduction. As global warming become a serious issue internationally, reduction of fuel consumption is especially of importance. In this study, an evaluation method for the WMTC mode fuel consumption using a one-dimensional engine simulation is investigated. The fuel consumption for the WMTC mode can be predicted in a short time without a complicated vehicle model to simulate transient behavior. The proposed method mostly showed good agreement with measured data for middle-class motorcycle using a chassis dynamometer.
Technical Paper

Development of a Drill Bit for CFRP/Aluminum-Alloy Stack: To Improve Flexibility, Economical Efficiency and Work Environment

2013-09-17
2013-01-2227
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
Technical Paper

Prediction of Vibration Fatigue Life for Motorcycle Exhaust Systems

2011-11-08
2011-32-0642
In this study, the technology that can predict fatigue life for motorcycle exhaust systems is developed. To predict the fatigue life, analyzing the engine vibration, modeling the vibration characteristics of exhaust systems and evaluating the fatigue damage of welded joints are considered essential. This paper shows an integrated numerical simulation and evaluation method. Furthermore, it is also shown with the result of a component vibration test of the muffler assembly to validate the technology. The results indicate a good correlation between the numerical simulation and the test.
Technical Paper

Development of Fail-safe Method for Motorcycle's Electronic Throttle Control System

2009-11-03
2009-32-0124
In recent years, even motorcycles impose demands for engine power controls that are more flexible and precise. The Electronic Throttle Control (ETC) system is one of the methods that addresses this need. However, the most important issue facing the installation of the ETC system on the motorcycle is handling failures. To avoid this problem, we developed an ETC system for motorcycles that can properly effect engine power control in case of a failure. This ETC system contains in duplicate the major components to detect failures and switch to a failure mode properly. To effect control that is optimally suited to the type of failure, this system switches between three types of failure modes. These failure modes are designed to minimize risks in case of a failure and maximize the operational capability while the rider is on the way to have the motorcycle repaired.
Technical Paper

Development of New Hydraulic Fluids Specifications for Construction Machinery

2005-11-01
2005-01-3574
Hydraulic fluid (HF) specifications for mobile construction equipment called JCMAS HK and HKB have been established by the Fuels and Lubricants Committee of Japan Construction Mechanization Association (JCMA). The specifications are designated by two viscosity categories of single grade and multigrade. Each category has ISO viscosity grade (VG) 32 and 46. The JCMAS HK oils are recommended for use in hydraulic systems designed at pressure up to 34.3MPa(5000psi) and to heat hydraulic fluid up to 100 °C. These oils also provide wear control, friction performance, oxidation and rust protection, seal swell control and filterability performance. Two piston pump test procedures were developed to evaluate lubricating performance of these oils under high pressure conditions. The JACMAS HKB oils are classified as environmentally friendly oils due to the additional requirement for biodegradability.
Technical Paper

Increasing of Seizure Durability of Shift Fork Using Surface Treatment

2005-10-12
2005-32-0020
In line with the increase in the output of motorcycle engines, there has been an increase in incidents of the seizure between shift fork and gear because of the increased thrust force. We designed a test method that uses actual shift forks to simulate actual sliding conditions, then used that test method to evaluate the feature of the shift fork sliding and the different shift fork surface treatments. The shift fork slid against the gear not as surface contact but as tilted contact. We selected the candidates from the view that the surface treatment of the shift fork contact surface to give it higher seizure resistance when in tilted contact is required. We evaluated chromium nitride thin film, diamond-like carbon thin film, molybdenum sprayed coating, and sulphonitriding, and molybdenum sprayed coating exhibited the highest seizure resistance. The conformability plays a significant role in the sliding between the shift fork and the gear.
Technical Paper

Analysis on Sport All-Terrain Vehicle Jumping with Multibody Dynamic Simulations

2005-10-12
2005-32-0013
In case of all-terrain vehicles (ATVs), which have characteristics of both motorcycles and cars, the effect of the rider movement can not be ignored when analyzing ATVs' behavior. We have developed a simulation system of an ATV with rider operations, which are throttle control and rider movement, by using multibody dynamic simulation software. To quantify the rider operations and verify the validity of the simulation system, we have conducted experiments and simulations on a sport-ATV in two jumping patterns. In this paper the results of comparison between simulation and experiment are reviewed. Then, we report the analysis results of the effects of the rider operations and the ground profile to ATV jumping behavior with using the simulation system.
Technical Paper

Development of a Magnesium Swing Arm for Motorcycles

2004-09-27
2004-32-0048
In order to improve the fuel efficiency and the operating performance of motorcycles, there is a need to reduce their weight. Magnesium, which is the lightest of the various metals currently being used and has a high specific strength, has the potential to satisfy that need. We conducted a study to clarify the weldability and strength characteristics of, and the most suitable surface treatment for, extruded magnesium alloys and rolled magnesium alloys. Based on the stress analysis by the finite element method, we designed a magnesium swing arm and produced the prototype swing arm by pressing hot rolled AZ31 magnesium alloy plates and welding them. The prototype is about 10% lighter and has higher torsional rigidity than a conventional aluminum swing arm.
Technical Paper

CFD Simulation of the Lubricating Oil Flow in Motorcycle Oilpan

2003-09-15
2003-32-0080
This paper describes a simulation of the lubricating oil flow in a motorcycle oilpan using a CFD technique in consideration of oil suction and oil return. In the technique, sink boundary and source boundary were used to simulate oil suction and oil return, and a VOF method was used to simulate the free surface of oil. To validate the simulation, a simulation result was compared with experiment results of a prototype motorcycle. As a result, the time of the simulated oil pressure drop in main gallery when the motorcycle decelerated rapidly in a racing circuit was agreed with the measured one. In addition, to demonstrate the applicability of the CFD simulation, a case study of the shape optimization on the baffle plate in the oilpan was shown.
Technical Paper

Development of Spraying Technology for Improving the Wear Resistance of Engine Cylinder Bores

2003-09-15
2003-32-0066
In response to design requirements for lower weight and higher output, the motorcycle engine cylinder block has evolved from a cast cylinder block to an aluminum alloy cylinder block whose bore walls are surface-treated for wear-resistance. Hard-chromium plating, nickel-compound plating, and the like are in wide use as the wear-resistance surface treatment method, but spray technology has recently been attracting attention because of less impact on the environment, superior initial running-in performance and good oil retention. We have been applying a unique spraying method called wire explosion spraying to those models with a special need for wear-resistance surface. In this report we describe our wire explosion spray technology. With the aim of improving the bond strength of the sprayed coat, we studied the effects of the collided particles' form on bond strength in the wire explosion spraying conditions.
X