Refine Your Search

Topic

Search Results

SAE EDGE™ Research Reports - Publications

2024-05-17
SAE EDGE Research Reports provide examinations significant topics facing mobility industry today including Connected Automated Vehicle Technologies Electrification Advanced Manufacturing
Event

Program - Government/Industry Meeting 2024

2024-05-17
Annual conference government policy, regulatory makers, automotive industry neutral forum discuss US government regulation, technology, customer acceptance future vehicle design. industry event safety, emission control, fuel efficiency, automated vehicles.
Magazine

SAE Truck & Off-Highway Engineering: February 2024

2024-02-15
Hyliion shifts focus from propulsion to power generation Prime power and EV charging are two areas that can benefit from the Karno linear generator beginning later this year. Intensifying pursuit of autonomous trucks Daimler Truck and Torc have established a clear roadmap that brings SAE level 4 trucks to the U.S. market by 2027. Commercial-truck EV fleets slow to grow Even for the largest players, the underdeveloped charging ecosystem is hampering commercial-truck fleets' electrification efforts.
Magazine

SAE Truck & Off-Highway Engineering: April 2023

2023-04-13
Headliners from Las Vegas Big reveals abounded at the triennial CONEXPO trade show. Following are some of the most notable unveilings from the desert. Cat doubles down on diesel with new C13D platform Deere pursues electric construction machines and charging infrastructure JCB debuts clean-sheet hydrogen combustion engine Volvo CE unveils electric asphalt compactor, announces NA arrival of L350H loader Honda reveals next-gen Autonomous Work Vehicle Deere 3D-prints fuel valves for tractors HP's binder jetting technology and GKN's manufacturing expertise helped John Deere realize its first 3D-printed metal part for mass production. Returning to the SAE presidency for 2023 Setting a "prudently aggressive" mindset in advancing SAE's goals in the mobility ecosystem.
Technical Paper

Review on CAN Bus Protocol: Attacks, Difficulties, and Potential Solutions

2023-04-11
2023-01-0926
The new generation vehicles these days are managed by networked controllers. A large portion of the networks is planned with more security which has recently roused researchers to exhibit various attacks against the system. This paper talks about the liabilities of the Controller Area Network (CAN) inside In-vehicle communication protocol and a few potentials that could take due advantage of it. Moreover, this paper presents a few security measures proposed in the present examination status to defeat the attacks. In any case, the fundamental objective of this paper is to feature a comprehensive methodology known as Intrusion Detection System (IDS), which has been a significant device in getting network data in systems over many years. To the best of our insight, there is no recorded writing on a through outline of IDS execution explicitly in the CAN transport network system.
Training / Education

Managing Energy Data: Advanced Analytics

Anytime
Introduction to Managing Energy Data: The Internet of Things (IoT) revolution (eg. the vast spread of smart meters worldwide) is generating massive amounts of energy data, drastically transforming the sector and current energy systems. This digital transformation gives rise to more intelligent ways of managing energy and brings about opportunities for energy companies to improve their business models and services. This course contains a brief introduction to the topics presented in the course, from smart meters and smart metering data to data science.
Magazine

SAE Truck & Off-Highway Engineering: October 2022

2022-10-06
eAxles gain traction OEMs are developing and testing axles with integrated electric powertrains to electrify trucks of all sizes. Securing CAN networks in commercial vehicles A CAN transceiver with built-in security functions can avoid the complexity of end-to-end security solutions that are especially hard to implement on CVs. Electrification is the future for defense vehicles Despite infrastructure challenges, electrified and automated military vehicles will save fuel and lives, said Allison's VP of Defense Programs at SAE COMVEC 2022. Editorial Hiring talent to meet high-tech demands Allison's now open for hydrogen testing Electrification's impact on commercial-vehicle chassis design Harbinger prepares to enter commercial market with novel eAxle ZF, Freudenberg developing integrated 'Powerpack' fuel cell and e-drive Freightliner's medium-duty makeover for M2 and SD models Toyota's hydrogen fuel-cell powertrain provides an electrifying ride
Standard

Requirements for Probe Data Collection Applications

2022-06-09
CURRENT
J2945/C_202206
Connected vehicles can provide data from multiple sensors that monitor both the vehicle and the environment through which the vehicle is passing. The data, when shared, can be used to enhance and optimize transportation operations and management—specifically, traffic flow and infrastructure maintenance. This document describes an interface between vehicle and infrastructure for collecting vehicle/probe data. That data may represent a single point in time or may be accumulated over defined periods of time or distance, or may be triggered based on circumstance. The purpose of this document is to define an interoperable means of collecting the vehicle/probe data in support of the use cases defined herein. There are many additional use cases that may be realized based on the interface defined in this document. Note that vehicle diagnostics are not included within the scope of this document, but diagnostics-related features may be added to probe data in a future supplemental document.
Standard

Hardware Protected Security for Ground Vehicles

2020-02-10
CURRENT
J3101_202002
Access mechanisms to system data and/or control is a primary use case of the hardware protected security environment (hardware protected security environment) during different uses and stages of the system. The hardware protected security environment acts as a gatekeeper for these use cases and not necessarily as the executor of the function. This section is a generalization of such use cases in an attempt to extract common requirements for the hardware protected security environment that enable it to be a gatekeeper. Examples are: Creating a new key fob Re-flashing ECU firmware Reading/exporting PII out of the ECU Using a subscription-based feature Performing some service on an ECU Transferring ownership of the vehicle Some of these examples are discussed later in this section and some have detailed sections of their own. This list is by no means comprehensive.
Article

Virtual factories accelerate collaboration, advance technologies

2019-08-26
The Commonwealth Center for Advanced Manufacturing (CCAM), a non-profit consortium based in Prince George County, Virginia, uses a 3D visualization lab to expand beyond the walls of its 62,000-square-foot brick and mortar facility and deliver a collaborative development for researchers in industry, academia, and government.
Article

MOBI rolls out the first blockchain-enabled Vehicle Identity (VID) mobility standard

2019-07-18
The Mobility Open Blockchain Initiative – a global nonprofit working to create standards in blockchain, distributed ledgers, and related technologies for consumers, smart cities, and mobility – has launched the industry's first vehicle identification (VID) standard incorporating blockchain technology into a digital vehicle identification system.
Article

Europe’s blockchain-based Smart E-Mobility Challenge will conclude this May in Germany

2019-05-07
TIoTA, an open software consortium of over 50 members organized to support the creation of a secure, scalable, interoperable, and trusted IoT ecosystem, began the E-Mobility Challenge to link IoT devices with consumers and stakeholder companies such as operators and service, communication, and payment providers within the preexisting European electric vehicle ecosystem.
Article

Software needs security, and security needs software: a scientific overview

2019-04-22
Software needs security. That's a consequence of using software to control critical systems. It's difficult because software is inherently a complex artifact, even when the code just consists of a single sequential program in a single programming language, with well-defined inputs and outputs. Of course, actual software rarely if ever has such a simple structure. Security needs software. That's a consequence of the complexity just mentioned. No process can ensure security at scale unless it is automated by using software itself: programming languages, verification tools, software platforms.
X