Refine Your Search

Topic

Search Results

Event

AeroTech® Digital Summit

2024-05-09
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech®

2024-05-09
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

Attend - AeroTech®

2024-05-09
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Event

AeroTech® Volunteer Resources

2024-05-09
New for 2022, AeroTech® will deliver even more robust programming by teaming up with AeroMat to deliver learning opportunities dedicated to: Additive Manufacturing and Materials, Environment and Sustainable Aviation (Sustainability), Autonomy and AI, Safety and Human Factors, Modeling, Simulation and Testing, Cybersecurity / Cyber-Physical Security, Industry 4.0 Smart Manufacturing and Assembly, IDEAL Summit (inclusion, diversity, equity, accessibility and leadership), Advanced Air Mobility (AAM) and Multimodal Mobility (M3)
Journal Article

Using Delphi and System Dynamics for IoT Cybersecurity: Preliminary Airport Implications

2021-03-02
2021-01-0019
Day by day, airports adopt more IoT devices. However, airports are not exempt from possible failures due to malware’s proliferation that can abuse vulnerabilities. Computer criminals can access, corrupt, and extract information from individuals or companies. This paper explains the development of a propagation model, which started with a Delphi process. We discuss the preliminary implications for airports of the simulation model built from the Delphi recommendations.
Event

2024-05-09

SAE EDGE™ Research Reports - Publications

2024-05-09
SAE EDGE Research Reports provide examinations significant topics facing mobility industry today including Connected Automated Vehicle Technologies Electrification Advanced Manufacturing
Journal Article

A Study on Secured Unmanned Aerial Vehicle-Based Fog Computing Networks

2023-11-03
Abstract With the recent advancement in technologies, researchers worldwide have a growing interest in unmanned aerial vehicles (UAVs). The last few years have been significant in terms of its global awareness, adoption, and applications across industries. In UAV-aided wireless networks, there are some limitations in terms of power consumption, data computation, data processing, endurance, and security. So, the idea of UAVs and Edge or Fog computing together deals with the limitations and provides intelligence at the network’s edge, which makes it more valuable to use in emergency applications. Fog computing distributes data in a decentralized way and blockchain also works on the principle of decentralization. Blockchain, as a decentralized database, uses cryptographic methods including hash functions and public key encryption to secure the user information. It is a prominent solution to secure the user’s information in blocks and maintain privacy.
Standard

Requirements for a COTS Assembly Management Plan

2020-08-03
CURRENT
EIA933C
This document applies to the development of Plans for integrating and managing COTS assemblies in electronic equipment and Systems for the commercial, military, and space markets; as well as other ADHP markets that wish to use this document. For purposes of this document, COTS assemblies are viewed as electronic assemblies such as printed wiring assemblies, relays, disk drives, LCD matrices, VME circuit cards, servers, printers, laptop computers, etc. There are many ways to categorize COTS assemblies1, including the following spectrum: At one end of the spectrum are COTS assemblies whose design, internal parts2, materials, configuration control, traceability, reliability, and qualification methods are at least partially controlled, or influenced, by ADHP customers (either individually or collectively). An example at this end of the spectrum is a VME circuit card assembly.
Standard

Unmanned Systems (UxS) Control Segment (UCS) Architecture: Architecture Technical Governance

2020-08-12
HISTORICAL
AS6522A
This Technical Governance is part of the SAE UCS Architecture Library and is primarily concerned with the UCS Architecture Model (AS6518) starting at Revision A and its user extensions. Users of the Model may extend it in accordance with AS6513 to meet the needs of their UCS Products. UCS Products include software components, software configurations and systems that provide or consume UCS services. For further information, refer to AS6513 Revision A or later. Technical Governance is part of the UCS Architecture Framework. This framework governs the UCS views expressed as Packages and Diagrams in the UCS Architecture Model.
Standard

Deliverable Aerospace Software Supplement for AS9100A Quality Management Systems - Aerospace - Requirements for Software (based on AS9100A)

2003-03-12
HISTORICAL
AS9006
The basic requirements of AS9100A apply with the following clarifications. This document supplements the requirements of AS9100A for deliverable software. This supplement contains Quality System requirements for suppliers of products that contain deliverable embedded or loadable airborne, spaceborne or ground support software components that are part of an aircraft Type Design, weapon system, missile or spacecraft operational software and/or support software that is used in the development and maintenance of deliverable software. This includes the host operating system software including assemblers, compilers, linkers, loaders, editors, code generators, analyzers, ground simulators and trainers, flight test data reduction, etc., that directly support creation, test and maintenance of the deliverable software.
Standard

NATIONAL AEROSPACE AND DEFENSE CONTRACTORS ACCREDITATION PROGRAM (NADCAP) REQUIREMENTS FOR ACCREDITATION OF PASS THROUGH DISTRIBUTORS

1993-06-24
HISTORICAL
AS7103
This aerospace standard outlines the minimum requirements for the quality assurance program of a distributor of new aircraft or aerospace parts and material. It is designed to aid in the surveillance and accreditation of a distributor who procures new parts and materials and resells these products to customers or other distributors in the aviation or aerospace industry, i.e., a PASS THROUGH distributor. This standard may be used to determine the adequacy and implementation of the distributor’s quality assurance program.
Standard

Processes for Application-Specific Qualification of Electrical, Electronic, and Electromechanical Parts and Sub-Assemblies for Use in Aerospace, Defense, and High Performance Systems

2022-05-19
WIP
ARP6379A
This document describes a process for use by ADHP integrators of EEE parts and sub-assemblies (items) that have been targeted for other applications. This document does not describe specific tests to be conducted, sample sizes to be used, nor results to be obtained; instead, it describes a process to define and accomplish application-specific qualification; that provides confidence to both the ADHP integrators, and the integrators’ customers, that the item will performs its function(s) reliably in the ADHP application.
Standard

Standard Best Practices for System Safety Program Development and Execution

2018-11-19
WIP
GEIASTD0010B
This document outlines a standard practice for conducting system safety. In some cases, these principles may be captured in other standards that apply to specific commodities such as commercial aircraft and automobiles. For example, those manufacturers that produce commercial aircraft should use SAE ARP4754 or SAE ARP4761 (see Section 2 below) to meet FAA or other regulatory agency system safety-related requirements. The system safety practice as defined herein provides a consistent means of evaluating identified risks. Mishap risk should be identified, evaluated, and mitigated to a level as low as reasonably practicable. The mishap risk should be accepted by the appropriate authority and comply with federal (and state, where applicable) laws and regulations, executive orders, treaties, and agreements. Program trade studies associated with mitigating mishap risk should consider total life cycle cost in any decision.
Magazine

Aerospace & Defense Technology: April 2023

2023-04-06
Breathing Life into Artificial Intelligence and Next Generation Autonomous Aerospace Systems Robotic Rotational Molding Creates New Opportunities for Military and Aerospace Applications Rim-Driven Electric Aircraft Propulsion High-Speed Midwave Infrared Cameras Enable Military Test Range Tracking System What Today's Advances in Radar Technology Mean for Testing and Training Tackling Ruggedization Challenges for RF Communications in Software Defined Radios AUVSI XPONENTIAL 2023 The Blueprint for Autonomy Multi-Scale Structuring of the Polar Ionosphere Understanding a radically new sensing capability for polar ionospheric science introduced by observational evidence recently provided by the electronically steerable Resolute Bay Incoherent Scatter Radar (RISR). Stepped-Frequency Distributed Radar for Through-the-Wall Sensing A technical analysis of the effectiveness of distributed radar for through-the-wall sensing applications.
X