Refine Your Search

Topic

Search Results

Technical Paper

Wireless Charging for EV/HEV with Prescriptive Analytics, Machine Learning, Cybersecurity and Blockchain Technology: Ongoing and Future Trends

2019-04-02
2019-01-0790
Due to the rapid development in the technological aspect of the autonomous vehicle (AV), there is a compelling need for research in the field vehicle efficiency and emission reduction without affecting the performance, safety and reliability of the vehicle. Electric vehicle (EV) with rechargeable battery has been proved to be a practical solution for the above problem. In order to utilize the maximum capacity of the battery, a proper power management and control mechanism need to be developed such that it does not affect the performance, reliability and safety of vehicle. Different optimization techniques along with deterministic dynamic programming (DDP) approach are used for the power distribution and management control. The battery-operated electric vehicle can be recharged either by plug-in a wired connection or by the inductive mean (i.e. wirelessly) with the help of the electromagnetic field energy.
Standard

Cybersecurity Guidebook for Cyber-Physical Vehicle Systems

2016-02-19
WIP
J3061
This recommended practice provides guidance on vehicle Cybersecurity and was created based off of, and expanded on from, existing practices which are being implemented or reported in industry, government and conference papers. ...Other proprietary Cybersecurity development processes and standards may have been established to support a specific manufacturer’s development processes, and may not be comprehensively represented in this document, however, information contained in this document may help refine existing in-house processes, methods, etc. ...This recommended practice establishes a set of high-level guiding principles for Cybersecurity as it relates to cyber-physical vehicle systems. This includes: • Defining a complete lifecycle process framework that can be tailored and utilized within each organization’s development processes to incorporate Cybersecurity into cyber-physical vehicle systems from concept phase through production, operation, service, and decommissioning. • Providing information on some common existing tools and methods used when designing, verifying and validating cyber-physical vehicle systems. • Providing basic guiding principles on Cybersecurity for vehicle systems. • Providing the foundation for further standards development activities in vehicle Cybersecurity.
Magazine

Automotive Engineering: February 2017

2017-02-02
SAE Standards News VS committees fully engaged on cybersecurity. Honda's new 10-speed is a slick shifter SAE Level 3 'hand off' challenging AI researchers Lightweight door module aims to trim vehicle weight Exclusive first drive: Torotrak's V-Charge technology New 10-speed auto delights in 2017 Ford F-150 Power and more underscore 2018 Toyota Camry I.D.
Standard

Survey of practices for securing the interface through the Data Link Connector (DLC)

2017-07-05
WIP
J3146
This document has been issued to provide a reference or overview of some current practices which could be utilized for securing the vehicle’s interface with the Data Link Connector (DLC) from cybersecurity risks associated with external test equipment connections (e.g. diagnostics scan tools) or remotely connected applications (e.g. telematics devices).
Technical Paper

Test Method for the SAE J3138 Automotive Cyber Security Standard

2020-04-14
2020-01-0142
This paper will provide an Overview of Automotive Cyber Security Standards related to the Vehicle OBD-II Data Link. The OBD-II Connector Attack Tree is described with respect to the SAE J3138 requirements for Intrusive vs. non-Intrusive Services. A proposed test method for SAE J3138 is described including hardware and software scripting. Finally, example test results are reviewed and compared with a potential threat boundary.
Standard

E/E Data Link Security

1991-09-16
HISTORICAL
J2186_199109
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Standard

E/E Data Link Security

1996-10-01
HISTORICAL
J2186_199610
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Magazine

Automotive Engineering: March 2018

2018-03-08
Truck Tech War! Ford, GM, and Ram arm their profit-pumping half-ton pickups for the 2020s' efficiency battle. Mobility mecca: WCX 2018 Provocative thought leaders, emerging disruptors, and the industry's best networking and career guidance all under one big roof: the 2018 SAE World Congress Experience is coming April 10-12. Mercedes adopts Harman UX for A-Class The 'smart' architecture is capable of OTA updates and features more-accurate voice recognition. Spark of genius Mazda's Skyactiv-X-the nexus of gasoline and diesel tech-remains on track for 2019 production. We test-drive recent prototypes to check development status. Taking aim at the drowsy-driver threat Hyundai Mobis is leveraging Level 4 tech to move 'departed' drivers safely off the road. Editorial: Fear and loathing on the path to Level 4 driving Supplier Eye Variability, risk and the value stream The Navigator How will automated vehicles deal with potholes?
Technical Paper

Communication between Plug-in Vehicles and the Utility Grid

2010-04-12
2010-01-0837
This paper is the first in a series of documents designed to record the progress of the SAE J2293 Task Force as it continues to develop and refine the communication requirements between Plug-In Electric Vehicles (PEV) and the Electric Utility Grid. In February, 2008 the SAE Task Force was formed and it started by reviewing the existing SAE J2293 standard, which was originally developed by the Electric Vehicle (EV) Charging Controls Task Force in the 1990s. This legacy standard identified the communication requirements between the Electric Vehicle (EV) and the EV Supply Equipment (EVSE), including off-board charging systems necessary to transfer DC energy to the vehicle. It was apparent at the first Task Force meeting that the communications requirements between the PEV and utility grid being proposed by industry stakeholders were vastly different in the type of communications and messaging documented in the original standard.
Magazine

Automotive Engineering: November 3, 2016

2016-11-03
SAE Convergence 2016 Talk of the healthy aspects of disruption mingles with SAE's renowned technical emphasis to foster the auto industry's continuing evolution toward electrification and autonomy. The Battery Man Speaks The speed of progress in automotive lithium batteries has impressed AABC's Dr. Menahem Anderman. So has silicon-graphite anode technology development from Tesla and Panasonic. Industry 4.0: The smart factory arrives The plants that produce automotive systems and vehicles are increasingly employing intelligent systems, Big Data and advanced analytics to improve quality, safety and efficiency. Editorial: Promise of 48 volts is no shock Nissan unveils variable-compression-ratio ICE for 2018 Infiniti production model Optimizing engine oil warm-up strategies for 'real-world' driving In search of higher-energy-content batteries Making Multiphysics fast and convenient I.D.
Magazine

SAE Off-Highway Engineering: October 7, 2015

2015-10-07
HMIs extend beyond the cab Telematics functions are being integrated into multi-function user interfaces. Standards step forward in design of off-highway electronics Functional safety standards are starting to impact many development projects, while the auto industry's AUTOSAR standard is being deployed to help enable software reuse and simplify designs. Leveraging automotive lightweighting techniques to improve off-highway emissions Where systems engineers can gain efficiencies in off-highway equipment is agnostic, they'll take it anywhere, and so they should, but one of the ways, often underestimated, is through the use of strong and lightweight advanced materials. Waste heat recovery for the long haul A WHR system based on an organic Rankine cycle has been developed for a long-haul Iveco Stralis truck.
Magazine

Momentum: February 2015

2015-02-02
Taking on the Valeo Innovation Challenge Two Canadian teams-the University of Ottawa and the University of Waterloo-finished in the top 3 among about 1,000 other universities from around the world in this challenge devoted to spurring innovative ideas for transportation. Colorado State University designs fuel-cell plug-in hybrid system Competing in the EcoCAR2 competition using a Chevrolet Malibu, the Colorado State team designed a system that features a 15-kW polymer electrolyte membrane fuel cell system, an 18.9-kW•h/177-kW lithium-ion battery, and a 145-kW motor. Cal State Fullerton combines art and engineering Team's submission on its Formula SAE car won first place in the second annual Generation Auto video contest organized in part by SAE International. Collaborative research project leads to potentially swarming VTOL UAVs The AVIGLE VTOL (vertical takeoff and landing) unmanned aerial vehicle was developed via collaboration by a variety of entities for a variety of applications.
Magazine

Automotive Engineering: November 2018

2018-11-01
Electrifying the two-wheeler Alta Motors, one of the newest electric motorcycle OEMs, is fueling zero-emission excitement with a passion for product. AV testing is for dummies Rapid development of automated vehicles is driving ATD innovations, as Humanetics' CEO explains. 2019 Yamaha Niken steers a radical path The world's first leaning three-wheel motorcycle is an expression not only of engineering prowess, but of a real passion for riding. Editorial Electrify the U.S. Postal Fleet!
Standard

Digital Communications for Plug-in Electric Vehicles

2014-12-11
CURRENT
J2931/1_201412
This SAE Information Report SAE J2931 establishes the requirements for digital communication between Plug-In Electric Vehicles (PEV), the Electric Vehicle Supply Equipment (EVSE) and the utility or service provider, Energy Services Interface (ESI), Advanced Metering Infrastructure (AMI) and Home Area Network (HAN). This is the third version of this document and completes the effort that specifies the digital communication protocol stack between Plug-in Electric Vehicles (PEV) and the Electric Vehicle Supply Equipment (EVSE). The purpose of the stack outlined in Figure 1 and defined by Layers 3 to 6 of the OSI Reference Model (Figure 1) is to use the functions of Layers 1 and 2 specified in SAE J2931/4 and export the functionalities to Layer 7 as specified in SAE J2847/2 (as of August 1, 2012, revision) and SAE J2847/1 (targeting revision at the end of 2012).
X