Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Vacua Buoyancy Is Provided by a Vacuum Bag Comprising a Vacuum Membrane Film Wrapped Around a Three-Dimensional (3D) Frame to Displace Air, on Which 3D Graphene “Floats” a First Stack of Two-Dimensional Planer Sheets of Six-Member Carbon Atoms Within the Same 3D Space as a Second Stack of Graphene Oriented at a 90-Degree Angle

2010-11-02
2010-01-1784
In Figures 3-5, 3D graphene "floats" a first stack of two-dimensional (2D) planar sheets of six-member carbon atoms within the same 3D space as a second stack of graphene oriented at a 90° angle. 3D graphene atomic trap nanomembranes in Figure 3 that ring link six-member carbon atoms together maintain an extremely high vacuum for the greatest buoyancy of a Vacua Dirigible. 3D graphene atomic trap nanomembranes can become an extremely high pressure air beam where no other material is as thin, strong, flexible, electrically conductive, and gastight. ...New graphite ultrathin nanomembranes made of layered graphene make vacuum bags gastight. An electric swing cycle is applied across nanomembranes to reduce air density on selected outside dirigible surfaces to gracefully control buoyancy. ...These thirty-two vacuum bags are manufactured from gastight six-member carbon molecules of graphene arrayed into composite ultrathin nanomembranes. Each surface of the hexagon vacuum bags gastight nanomembranes are individual electric circuits.
Technical Paper

Enhancement of Mechanical and Thermal Characteristics of Automobile Parts using Flax/Epoxy-Graphene Nanofiller Composites

2024-02-23
2023-01-5116
This research emphasizes the flax-based composite, developed using the hand lay-up method and augmented with three distinct graphene nanofillers. The graphene fillers are categorized as large nanorods (dimensions 3-5 nm, lengths 150-300 nm), small nano threads (dimensions 6-12 nm, lengths under 50 nm), and spherical particulates (dimensions 29-39 nm). ...Thermal conductivity evaluations of the composite, integrated with different graphene configurations, recorded enhancements ranging from 0.22 W/mK to 0.286 W/mK at a 2 wt.% graphene concentration. At an elevated 4 wt.% graphene addition, the small rod-shaped fillers demonstrated an impressive 59.6% enhancement over the flax/epoxy baseline, while the larger rod and spherical graphene nanoparticles showcased a 22.14% enhancement. ....% inclusion of spherical graphene nanoparticles is particularly effective in enhancing the ultimate tensile strength and fracture elongation of the epoxy matrix, registering improvements of 10% and 29% respectively.
Technical Paper

Experimental Study of Heat Transfer and Pressure Drop Phenomena in Kerosene-Graphene Nanoplatelets in a Mini Channel Heat Sink

2022-11-07
2022-01-5093
Our work intends to conduct experiments on kerosene-graphene nanoplatelets (GNP) nanofluid in a mini channel heat sink (MCHS) in two concentrations of graphene to verify the heat transfer and other hydrothermal phenomena. Many experiments have already been carried out on cooling electronic devices using mini channels along with various water-based nanofluids. ...The experiments with kerosene-GNP nanofluid are conducted in two different weight percentages of graphene, 0.01 and 0.03. The surfactant used for best visual stability is oleylamine, with an optimum mass ratio of 0.6 between it and graphene nanoparticles. ...The surfactant used for best visual stability is oleylamine, with an optimum mass ratio of 0.6 between it and graphene nanoparticles. A Peltier heater is attached to the bottom of the mini channel and provided with three different heat supplies of 8 W, 10 W, and 12 W, respectively, by varying the current and voltage of the direct current (DC) source.
Book

Materials and Process Modeling of Aerospace Composites

2019-04-30
. • An overview on the classifications of composites used in aerospace industry, ranging from conventional glass- fiber reinforced composites to advanced graphene nanocomposites. • The recent work on computational material engineering on aerospace composite materials, including fundamental computational frame work and case studies on the modeling of materials and processes
Magazine

Aerospace & Defense Technology: February 2021

2021-01-28
Empowering Soldiers Through ISPDS Dispensable Gels vs Gap Filler Pads An Analysis of Thermal Management Materials Electronic Warfare Vying for Control of the Electromagnetic Spectrum More Bang for the Buck A New Design and Manufacturing Method for Deep Penetrating Bomb Cases A Comprehensive Way to Use Bonding to Improve RF Performance of Low Noise Amplifiers Army and Universities Deploy New Warfighter Communication Technology Radiation Effects on Electronics in Aligned Carbon Nanotube Technology (RadCNT) Characterizing the fundamental mechanisms and charge transport phenomena governing the interactions between ionizing and non-ionizing radiation with carbon-based (nanotube and graphene) field-effect transistors (FETs) devices and integrated circuits (ICs). An Ultrafast Testbed for Comprehensive Characterization of Photonics, Electronic, and Optoelectronic Properties of Integrated Nanophotonic Structures High-speed testing technology will enable advances such as new digital signal processing/computing platforms in the optical domain through the development of innovative high-speed and low-power nonlinear optical processing cores that can be co-integrated with digital signal processors to enable new functionalities.
Magazine

Aerospace & Defense Technology: June 2015

2015-06-01
Regional and bizjets refined and redefined As the regional and business jet markets steadily rebound, so too do the propulsion technologies that will provide airframers and their customers competitive advantage. Getting it right with composites With composites now a mainstay in most new aircraft designs, the engineering emphasis has switched from understanding if they work to thinking through the most efficient way to manufacture them, such as using design-for-manufacturing software.
Magazine

Aerospace & Defense Technology: December 2023

2023-12-07
How Distributed Metal Additive Manufacturing Can Add a Surge to Military Supplier Strategies Ensure Aerospace Composite Quality with Force Measurement, Material Testing How Business Networks Can Help Stabilize the A&D Supply Chain A blueprint for modernizing the supply chain for greater connectedness and collaboration. Unlocking the Potential of 3D-Printed Polymers in Aerospace and Defense How to Select the Right Silicone for Space Applications Key Measurements to Maintain Performance of Critical Electronic Systems on Military Aircraft and Warships Physicists Develop a New Type of Antenna Towards Sustainable Recycling of Epoxy-Based Polymers: Approaches and Challenges of Epoxy Biodegradation Composites are especially important for the development and implementation of sustainable technologies such as wind power, energy-efficient aircrafts, and electric cars.
Book

Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously

2016-01-01
Solar Energy Harvesting: How to Generate Thermal and Electric Power Simultaneously describes energy harvesting using a hybrid concentrating photovoltaic (PV) system with simultaneous thermal generation for energy storage. Several designs have been proposed to build a system that takes advantage of the entire solar spectrum through direct electric generation using concentrated light onto photovoltaics while generating thermal energy using wavelengths of light not captured by the PV cell. This title addresses the current technologies and state-of-the-art designs, as well as the methodologies, underlying physics, and engineering implications.
Magazine

Aerospace & Defense Technology: February 2020

2020-01-30
Rad-Hard Microelectronics for Space Applications Outsourcing Plasma Treatments for Surface Modification Adding Context to Full-Motion Video for Improved Surveillance and Situational Awareness Implementing an Aerospace Factory of the Future 90° Hybrid Coupled Power Amplifier - Pros and Cons A New Network Design for the "Internet from Space" Future Advances in Electronic Materials and Processes - Flexible Hybrid Electronics Despite progress being made, there are still significant obstacles to the manufacture and use of flexi-ble hybrid electronics in military applications. Heterogeneous Integration Technology Integrating different types of devices and materials could increase their functional density, improving the performance of electro-optic systems for sensor applications. The Impact of Cyber Cameras on the Intelligence Community The ability to covertly access and manipulate cyber cameras could provide valuable strategic data for the US intelligence community.
Magazine

Aerospace & Defense Technology: September 2020

2020-09-01
Radiation-Tolerant FPGAs Solve Spacecraft Design Challenges Thermal Management for Directed Energy Weapons New Diamond Super-Material Enhances Aircraft Survivability Development of a Secure Private Neural Network Capability From DC to Daylight - How Innovations in Microwave Absorbers Shield the Warfighter Army Advances Materials for New Low-Profile Antenna Directed-Energy System to Defeat Small Unmanned Aircraft System Swarms New weapons technology is needed to combat the proliferation of small unmanned aircraft systems (sUAS), miniaturization of sensor technology, and advancement of UAS swarm logic that will enable swarms of sUAS to threaten US airbases by the 2025 timeframe.
Book

The Electrification of Civil Aircraft and the Evolution of Energy Storage

2017-08-28
Larger airframes drove the development of electrical systems, capable of quickly and reliably starting the new higher power engines. These soon gave rise to the need for engine-mounted electrical generators as the primary source of in-flight power for the electrical loads and onboard recharging of the aircraft battery system. Of all the backup power sources, batteries represent the most common means of storing energy for auxiliary or emergency power requirements. It is not unusual for a typical commercial airliner, such as a B-737 or A-320, to have dozens of batteries on board. Over time, multiple battery chemistries were put to the test and the industry is still working on the optimal option. The lithium-ion technology has been gaining acceptance, with some important aspects to be considered: the application type, basic safety requirements and the presence or absence of humans on the vehicle.
Magazine

Aerospace & Defense Technology: April 2016

2016-04-01
Electronic Warfare Next Generation FPGAs for Electronic Warfare Systems Materials: Composites Managing the Impact of Nanomaterials in Aerospace Manufacturing Aerospace Materials/Manufacturing Turbine Flow Meters Alternative Power Sources Designing a Power Generation System for a More-Electric Aircraft
X