Refine Your Search

Topic

Author

Search Results

Technical Paper

Improving Cruise Control Efficiency through Speed Flexibility & On-Board Data

2023-10-31
2023-01-1606
In recent decades, significant technological advances have made cruise control systems safer, more automated, and available in more driving scenarios. However, comparatively little progress has been made in optimizing vehicle efficiency while in cruise control. In this paper, two distinct strategies are proposed to deliver efficiency benefits in cruise control by leveraging flexibility around the driver’s requested set speed, and road information that is available on-board in many new vehicles. In today’s cruise control systems, substantial energy is wasted by rigidly controlling to a single set speed regardless of the terrain or road conditions. Introducing even a small allowable “error band” around the set speed can allow the propulsion system to operate in a pseudo-steady state manner across most terrain. As long as the vehicle can remain in the allowed speed window, it can maintain a roughly constant load, traveling slower up hills and faster down hills.
Technical Paper

Robustness of RTV (Room Temperature Vulcanized Rubber) Joint Design in Electric Vehicles

2022-10-05
2022-28-0082
As the automobile industry is moving towards Electrical vehicles, it becomes very important to have low cost and robust solution to seal all the internal Battery sub systems. It’s a known fact that various IC engine Vehicles are already using Room temperature vulcanized rubber (RTV) for many metal and composite sealing interfaces. Nevertheless, it always needs a good structural design to have good sealing performance. For designing a robust RTV joint for composite structures, it becomes important to have standard RTV chamfers. Sometimes even with these standards, it becomes very costly in having warranty issues when we have weak structure around RTV chamfers. Any joint structure involves multiple design parameters which might impact the sealing performance. Some of the joint structural parameters should be well designed at the early phase of product development cycle, which otherwise will later add lot of cost in modifying the product with its integrated components.
Technical Paper

Automated Fabrication for Low-Volume Applications

2020-12-08
2020-01-5103
Currently, the dominant technology used in the manufacture of mass-market automobile structures is sheet-metal stamping because of its suitability for producing accurate, strong, durable components in large quantities [1]. While cost-effective and fast for high-volume applications, the cost of manufacturing stamping dies is difficult to profitably amortize over a low-volume product in any but the most high-priced vehicle segments. This study examines the application of automated fabrication technologies as an alternative to stamping for the production of low-volume body structure components, including the impacts on both design and performance.
Journal Article

Braking Systems for High Performance Electric Vehicles - A Design Study

2020-10-05
2020-01-1612
Any young person who has taken delight in playing with toy slot cars knows that the world of racing and the world of electric cars has been intertwined for a long time. And anyone who has driven a modern performance electric vehicle knows that the instant acceleration, exhilarating speeds, and joy of driving of slot cars is reflected in these full sized “toys”, with the many more practical benefits that come from being full-sized and steerable. There is strong foreshadowing of a vibrant future for performance cars in some of the EV’s on the market now and in the near future, some offering “ludicrous” acceleration, and others storied nameplates with performance to match. The ease at which powerful electric drives can capably hurtle a massive vehicle around the track at high speeds, combined with the potential for the same electric drives to exert powerful regenerative braking, creates a very interesting situation for brake engineers.
Technical Paper

The influence of A-pillar obscuration/location on driver visibility

2020-01-13
2019-36-0062
During the early phase of vehicle development, one of the key design attributes to consider is visibility for the driver. Visibility is the ability to see one’s surrounding environment while they are driving. Therefore, it is one of the key requirements to be considered during the vehicle design. Certain vehicle characteristics such as the size of windshield and the design of the pillars influence the perception of visibility for the driver. One specific characteristic influencing satisfaction is A-pillar obscuration and location, which is the subject of this paper. The objective of this project is to analyze the relationship between the A-pillar obscuration/location with the driver satisfaction under real world driving conditions, based on research, statistical data analysis and dynamic clinics. Other influences, such as the position of the occupant in the seat was also studied and captured in this paper.
Technical Paper

Vibro-Acoustic Analysis for Modeling Propeller Shaft Liner Material

2019-06-05
2019-01-1560
In recent truck applications, single-piece large-diameter propshafts, in lieu of two-piece propshafts, have become more prevalent to reduce cost and mass. These large-diameter props, however, amplify driveline radiated noise. The challenge presented is to optimize prop shaft modal tuning to achieve acceptable radiated noise levels. Historically, CAE methods and capabilities have not been able to accurately predict propshaft airborne noise making it impossible to cascade subsystem noise requirements needed to achieve desired vehicle level performance. As a result, late and costly changes can be needed to make a given vehicle commercially acceptable for N&V performance prior to launch. This paper will cover the development of a two-step CAE method to predict modal characteristics and airborne noise sensitivities of large-diameter single piece aluminum propshafts fitted with different liner treatments.
Technical Paper

Development of Evaluation Methods for Steering Loss of Assist

2019-04-02
2019-01-1236
Loss of power steering assist (LoA) is viewed as a potential hazard in certain vehicle operational scenarios. Despite the importance of this steering failure mode, few published test protocols for the objective or subjective evaluation of vehicle performance in a loss of assist situation exist. The first part of this paper examines five of the key steering failure modes that can result in LoA and discusses why LoA persists as a key industry challenge. The second part analyzes the situational dynamics affecting vehicle controllability during a LoA event and proposes a subjective evaluation driving course that facilitates evaluations in various LoA scenarios. A corresponding objective test procedure and metric is also proposed. These evaluation methods support consistent performance evaluation of physical vehicles while also enabling the prediction of vehicle characteristics early in the vehicle development process (VDP).
Technical Paper

Multi-Material Topology Optimization: A Practical Method for Efficient Material Selection and Design

2019-04-02
2019-01-0809
As conventional vehicle design is adjusted to suit the needs of all-electric, hybrid, and fuel-cell powered vehicles, designers are seeking new methods to improve system-level design and enhance structural efficiency; here, multi-material optimization is suggested as the leading method for developing these novel architectures. Currently, diverse materials such as composites, high strength steels, aluminum and magnesium are all considered candidates for advanced chassis and body structures. By utilizing various combinations and material arrangements, the application of multi-material design has helped designers achieve lightweighting targets while maintaining structural performance requirements. Unlike manual approaches, the multi-material topology optimization (MMTO) methodology and computational tool described in this paper demonstrates a practical approach to obtaining the optimum material selection and distribution of materials within a complex automotive structure.
Technical Paper

Aerodynamic Development of the 2019 Chevrolet Corvette C7 ZR1

2019-04-02
2019-01-0665
This paper presents an overview of the aerodynamic development of the 2019 Chevrolet Corvette C7 ZR1. Extensive wind tunnel testing and computational fluid dynamics simulations were completed to engineer the ZR1’s aerodynamics to improve lift-to-drag efficiency and track capability over previous Corvette offerings. The ZR1 architecture changes posed many aerodynamic challenges including increased vehicle cooling, strict packaging demands, wider front track width, and aggressive exterior styling. Through motorsports-inspired aerodynamic development, the ZR1 was engineered to overcome these challenges through the creation of new devices such as a raised rear wing and front underwing. The resulting Standard ZR1 achieved a top speed of 212 mph making it the fastest Corvette ever [1]. Optionally, the ZR1 with the ZTK Performance Package provides the highest downforce of any Corvette, generating approximately 950 pounds at the ZTK’s top speed [1].
Technical Paper

A Qualitative and Quantitative Aerodynamic Study of a Rotating Wheel inside a Simplified Vehicle Body and Wheel Liner Cavity

2019-04-02
2019-01-0658
As automotive OEMs (Original Equipment Manufacturer) struggle to reach a balance between Design and Performance, environmental legislations continues to demand more rapid gains in vehicle efficiency. As a result, more attention is being given to the contributions of both tire and wheels. Not only tire rolling resistance, but also tire and wheel aerodynamics are being shown to be contributors to overall efficiency. To date, many studies have been done to correlate CFD simulations of rotating wheels both in open and closed wheeled environments to windtunnel results. Whereas this ensures proper predictive capabilities, little focus has been given to thoroughly explaining the physics that govern this complex environment. This study seeks to exhaustively investigate the complex interactions between the ground, body, and a rotating tire/wheel.
Technical Paper

Aerodynamically Induced Loads on Hood Latch and Hood Retention Systems

2019-04-02
2019-01-0657
Hood latches are provided with a secondary latch mechanism in order to restrain hoods in the event of an incomplete closing operation. It is important thus to understand the aerodynamically induced loading conditions the latch and hood will be subject to in order to design the hood and hood retention system to withstand those loads. In this paper a method of collecting load and displacement data from actual vehicles is presented, as well as an analysis of the results and the implications for hood and latch design.
Technical Paper

The influence of forward up vision on driver visibility

2018-09-03
2018-36-0293
During the early phase of vehicle development, one of the key design attributes to consider is visibility for the driver. Visibility is the ability to see the surrounding environment as one is driving. This need should drive the vehicle design enabling a move favorable view for the driver. Certain vehicle characteristics such as the size of windshield and the design of the pillar influence the perception of visibility for the driver. One specific characteristic influencing satisfaction is forward up vision, which is the subject of this paper. The objective of this project was to analyze the influence of forward up vision on driver satisfaction under real world driving conditions. Other influences such as the positon of the occupant in the seat was also studied. This study was supported by research, statistical data analysis and dynamic clinics.
Journal Article

FWD Halfshaft Angle Optimization Using 12 Degree of Freedom Analytical Model

2017-06-05
2017-01-1770
This paper describes the development of an analytical method to assess and optimize halfshaft joint angles to avoid excessive 3rd halfshaft order vibrations during wide-open-throttle (WOT) and light drive-away events. The objective was to develop a test-correlated analytical model to assess and optimize driveline working angles during the virtual design phase of a vehicle program when packaging tradeoffs are decided. A twelve degree-of-freedom (12DOF) system model was constructed that comprehends halfshaft dynamic angle change, axle torque, powertrain (P/T) mount rate progression and axial forces generated by tripot type constant velocity (CV) joints. Note: “tripot” and “tripod” are alternate nomenclatures for the same type of joint. Simple lumped parameter models have historically been used for P/T mount optimization; however, this paper describes a method for using a lumped parameter model to also optimize driveline working angles.
Technical Paper

Noise and Vibration Measurement Methods for Large Diameter Single-Piece Aluminum Propeller Shafts

2017-06-05
2017-01-1775
This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
Technical Paper

Effects of Altitude and Road Gradients in Boosted Hydraulic Brake Systems

2016-04-05
2016-01-0463
Brake systems are strongly related with safety of vehicles. Therefore a reliable design of the brake system is critical as vehicles operate in a wide range of environmental conditions, fulfilling different security requirements. Particularly, countries with mountainous geography expose vehicles to aggressive variations in altitude and road grade. These variations affect the performance of the brake system. In order to study how these changes affect the brake system, two approaches were considered. The first approach was centered on the development of an analytical model for the longitudinal dynamics of the vehicle during braking maneuvers. This model was developed at system-level, considering the whole vehicle. This allowed the understanding of the relation between the braking force and the altitude and road grade, for different fixed deceleration requirement scenarios. The second approach was focused on the characterization of the vacuum servo operation.
Technical Paper

Critical Plane Analysis of Rubber Bushing Durability under Road Loads

2016-04-05
2016-01-0393
We demonstrate here an accounting of damage accrual under road loads for a filled natural rubber bushing. The accounting is useful to developers who wish to avoid the typical risks in development programs: either the risk of premature failure, or of costly overdesign. The accounting begins with characterization of the elastomer to quantify governing behaviors: stress-strain response, fatigue crack growth rate, crack precursor size, and strain crystallization. Finite Element Analysis is used to construct a nonlinear mapping between loads and strain components within each element. Multiaxial, variable amplitude strain histories are computed from road loads. Damage accrues in this reckoning via the growth of cracks. Crack growth is calculated via integration of a rate law from an initial size to a size marking end-of-life.
Journal Article

Virtual Tire Data Influence on Vehicle Level Handling Performance

2015-04-14
2015-01-1570
This study presents the comparison of vehicle handling performance results obtained using physical test tire data and a tire model developed by means of Finite Element Method. Real tires have been measured in laboratory to obtain the tire force and moment curves in terms of lateral force and align torque as function of tire slip angle and vertical force. The same tire construction has been modeled with Finite Element Method and explicit formulation to generate the force and moment response curves. Pacejka Magic Formula tire response models were then created to represent these curves from both physical and virtual tires. In the sequence, these tire response models were integrated into a virtual multibody vehicle model developed to assess handling maneuvers.
Technical Paper

Forming Limit Curves for the AA5083 Alloy under Quick Plastic Forming Conditions

2011-04-12
2011-01-0235
Forming Limit Curves (FLCs) were developed for the 5083 aluminum alloy at conditions simulating high temperature processes such as superplastic and quick plastic forming. Sheet samples were formed at 450 °C and at a constant strain rate of 5x10-3 s-1, by free bulging into a set of elliptical die inserts with different aspect ratios. Friction-independent formability diagrams, which distinguish between the safe and unsafe deformation zones, were constructed. Although the formability diagrams were confined to the biaxial strain region (right side quadrant of an FLD), the elliptical die insert methodology provides formability maps under conditions where traditional mechanical stretching techniques are limited.
Technical Paper

Failure Evaluation of Clinched Thin Gauged Pedestrian Friendly Hood by Slam Simulation

2011-04-12
2011-01-0789
In order to reduce the number of head injuries sustained by pedestrian accidents, safety engineers are developing pedestrian friendly hood systems through gauge optimization of the hood inner panel. In this study, the clinch method was employed to assemble a pedestrian friendly hood with a 0.5mm thick inner panel. Static and dynamic analyses were carried out to determine the clinch experiencing the highest loads and to understand the fatigue behavior of a clinched hood during a slam event. The macroscopic failure modes of clinched joints by hood slam were studied by means of a scanning electron microscope. A simple equation was derived to correlate the hexahedron spot weld model as a substitute for clinching in order to obtain an equivalent stiffness for a clinched joint within the linear region of an F-D curve. The F-D curve was obtained by lap shear testing.
Journal Article

Effect of Regenerative Braking on Foundation Brake Performance

2010-10-10
2010-01-1681
Regenerative braking is one of the key enablers of improved energy efficiency and extension of driving range in parallel and series hybrid, and electric-only vehicles. It is still used in conjunction with friction brakes, due to the enormous amount of energy dissipated in maximum effort stops (and the lack of a competitive alternate technology to accommodate this power level), and to provide braking when on-board energy storage/dissipation devices cannot store enough energy to support braking. Although vehicles equipped with regenerative braking are becoming more and more commonly available, there is little published research on what the dramatic reduction in friction brake usage means to the function of the friction brakes themselves. This paper discusses -with supporting data from analysis and physical tests - some of the considerations for friction brakes related to usage on vehicles with regenerative braking, including corrosion, off-brake wear, and friction levels.
X