Refine Your Search

Topic

Author

Search Results

Technical Paper

Effects of Wind Speed and Longitudinal Direction on Fire Patterns from a Vehicle Fire in a Compact Car

2017-03-28
2017-01-1353
This paper compares the material consumption and fire patterns which developed on four nearly identical compact sedans when each was burned for exactly the same amount of time, but with different wind speed and direction during the burns. This paper will also compare the effects of environmental exposure to the fire patterns on the vehicles. The burn demonstrations were completed at an outdoor facility in southeast Michigan on four late model compact sedans. The wind direction was controlled by placing the subject vehicle with either the front facing into the wind, or rear facing into the wind. Two of the burns were conducted when the average observed wind speed was 5-6kph and two of the burns were conducted at an average observed wind speed of 19kph.
Journal Article

Locating Wire Short Fault for In-Vehicle Controller Area Network with Resistance Estimation Approach

2016-04-05
2016-01-0065
Wire shorts on an in-vehicle controller area network (CAN) impact the communication between electrical control units (ECUs), and negatively affects the vehicle control. The fault, especially the intermittent fault, is difficult to locate. In this paper, an equivalent circuit model for in-vehicle CAN bus is developed under the wire short fault scenario. The bus resistance is estimated and a resistance-distance mapping approach is proposed to locate the fault. The proposed approach is implemented in an Arduino-based embedded system and validated on a vehicle frame. The experimental results are promising. The approach presented in this paper may reduce trouble shooting time for CAN wire short faults and may enable early detection before the customer is inconvenienced.
Journal Article

Effect of Prior Austenite Grain Size on Impact Toughness of Press Hardened Steel

2016-04-05
2016-01-0359
Impact toughness (or resistance to fracture) is a key material property for press hardened steel used in construction of the safety-critical elements of automotive body structures. Prior austenite grain size, as primarily controlled by the incoming microstructure and austenitization process, is a key microstructural feature that influences the impact toughness of press hardened steel. In this paper, a special Charpy V-notch impact test is developed to quantify the impact toughness of press hardened steel sheets with various prior austenite grain sizes, by stacking a number of thin sheets via mechanical riveting. Both the ductile-to-brittle transition temperature and upper shelf energy are analyzed in an effort to establish a correlation between impact toughness and prior austenite grain size. Within tested conditions, impact performance shows only a slight decrease as the prior austenitic grain size increases from 18 to 38 microns.
Journal Article

Process Robustness of Laser Braze-Welded Al/Cu Connectors

2016-04-05
2016-01-1198
Laser welding of dissimilar metals such as Aluminum and Copper, which is required for Li-ion battery joining, is challenging due to the inevitable formation of the brittle and high electrical-resistant intermetallic compounds. Recent research has shown that by using a novel technology, called laser braze-welding, the Al-Cu intermetallics can be minimized to achieve superior mechanical and electrical joint performance. This paper investigates the robustness of the laser braze-welding process. Three product and process categories, i.e. choice of materials, joint configurations, and process conditions, are studied. It is found that in-process effects such as sample cleanness and shielding gas fluctuations have a minor influence on the process robustness. Furthermore, many pre-process effects, e.g. design changes such as multiple layers or anodized base material can be successfully welded by process adaption.
Technical Paper

Next Generation “Voltec” Charging System

2016-04-05
2016-01-1229
The electric vehicle on-board charger (OBC) is responsible for converting AC grid energy to DC energy to charge the battery pack. This paper describes the development of GM’s second generation OBC used in the 2016 Chevrolet Volt. The second generation OBC provides significant improvements in efficiency, size, and mass compared to the first generation. Reduced component count supports goals of improved reliability and lower cost. Complexity reduction of the hardware and diagnostic software was undertaken to eliminate potential failures.
Technical Paper

Combined Synchrotron X-Ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-Assisted Steels

2016-04-05
2016-01-0419
The strain-induced diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing.
Technical Paper

Fatigue Life Prediction of Friction Stir Linear Welds for Magnesium Alloys

2016-04-05
2016-01-0386
Friction stir linear welding (FSLW) is widely used in joining lightweight materials including aluminum alloys and magnesium alloys. However, fatigue life prediction method for FSLW is not well developed yet for vehicle structure applications. This paper is tried to use two different methods for the prediction of fatigue life of FSLW in vehicle structures. FSLW is represented with 2-D shell elements for the structural stress approach and is represented with TIE contact for the maximum principal stress approach in finite element (FE) models. S-N curves were developed from coupon specimen test results for both the approaches. These S-N curves were used to predict fatigue life of FSLW of a front shock tower structure that was constructed by joining AM60 to AZ31 and AM60 to AM30. The fatigue life prediction results were then correlated with test results of the front shock tower structures.
Journal Article

Further Research into the Role of the Caliper Piston in Brake Roughness

2015-09-27
2015-01-2667
Previously published research [1] covering the role of piston material properties in brake torque variation sensitivity and roughness concluded that phenolic pistons have significantly higher low-pressure range compliance than steel pistons, which promotes lower roughness propensity. It also determined that this property could be successfully characterized using a modern generation of direct-acting servo hydraulically actuated brake component compression test stands. This paper covers a subsequent block of research into the role of the caliper piston in brake torque variation sensitivity (BTV sensitivity) and thermal roughness of a brake corner. It includes measurements of hydraulic stiffness of pistons in a “wet” fixture, both with and without a brake pad and multi-layer bonded noise shim.
Technical Paper

Acoustic Performance Evaluation of Hood Liner Constructions

2015-06-15
2015-01-2206
In automotive noise control, the hood liner is an important acoustic part for mitigating engine noise. The random incidence absorption coefficient is used to quantify the component level acoustic performance. Generally, air gaps, type of substrate materials, density of the substrate materials and Air Flow Resistivity (AFR) of the cover scrim are the dominant control factors in the sound absorption performance. This paper describes a systematic experimental investigation of how these control factors affect flat sample performance. The first stage of this study is full factorial measurement based on current available solutions from sound absorber suppliers. The acoustic absorption of different hood liner constructions, with variations in materials, density, air gaps, and scrims was measured.
Technical Paper

Development of an End-of-Line Driveline System Balance Tester

2015-06-15
2015-01-2187
This paper describes the development of a semi-automated end-of-line driveline system balance tester for an automotive assembly plant. The overall objective was to provide final quality assurance for acceptable driveline noise and vibration refinement in a rear wheel drive vehicle. The problem to be solved was how to measure the driveline system unbalance within assembly plant constraints including cycle time, operator capability, and integration with a pre-existing vehicle roll test machine. Several challenging aspects of the tester design and development are presented and solutions to these challenges are addressed. Major design aspects addressed included non-contacting vibration sensing, data acquisition/processing system and vehicle position feedback. Development challenges addressed included interaction of engine and driveline vibration orders, flexible driveline coupling effects, tachometer positional reference error, and vehicle-to-vehicle variation of influence coefficients.
Technical Paper

Enhanced Acoustic Performance using Key Design Parameters of Headliners

2015-06-15
2015-01-2339
Sound absorption materials can be key elements for mass-efficient vehicle noise control. They are utilized at multiple locations in the interior and one of the most important areas is the roof. At this location, the acoustic treatment typically comprises a headliner and an air gap up to the body sheet metal. The acoustic performance requirement for such a vehicle subsystem is normally a sound absorption curve. Based on headliner geometry and construction, the sound absorption curve shape can be adjusted to increase absorption in certain frequency ranges. In this paper an overall acoustic metric is developed to relate design parameters to an absorption curve shape which results in improved in-vehicle performance. This metric is based on sound absorption coefficient and articulation index. Johnson-Champoux-Allard equivalent fluid model and diffuse field equations are used. The results are validated using impedance tube measurements.
Journal Article

FEA Development of Spot Weld Modeling with Fracture Forming Limit Diagram(FFLD) Failure Criteria and Its Application to Vehicle Body Structure

2015-04-14
2015-01-1316
Spot weld separation in vehicle development stage is one of the critical phenomena in structural analyses regarding quasi-static test condition, like roof strength or seat/belt pull. It directly reduces structural performance by losing connected load path and occasionally introduces tearing on surrounding sheet metals. Traditionally many efforts have been attempted to capture parent metal ductile fracture, but not applied to spot weld separations in automotive FEA simulations. [1,2,3] This paper introduces how to develop FFLD failure criteria from a series of parametric study on ultra high strength sheet steel and deals with failure criteria around spot weld and parent metal. Once the fracture strains for sheet steels are determined, those developed values were applied to traditional spot weld coupon FEA simulations and tests. Full vehicle level roof strength FEA simulations on a typical automotive body structure were performed and verified to the physical tests.
Technical Paper

Optimization of Front Bumper Beam for RCAR Performance using Design of Six Sigma and Finite Element Analysis

2015-04-14
2015-01-1493
Research Council for Automotive Repairs (RCAR) has developed a bumper test at 10 km/h to assess the damageability and repairing cost during a low speed collusion. For minimum damage and minimum repairing cost during low speed collusion it is necessary to design a bumper beam which provides structural stiffness and reduced deflection. Often it is challenging to design a front bumper beam to meet all safety requirements including, RCAR, high speed offset barrier and pedestrian protection, since these requirements are not necessarily compatible with each other. Design changes in rails and packaging constraints add to this challenge. In this study, design of six sigma (DFSS) and finite element analysis are used to study the parameters that affect the stiffness and deflection of the front bumper beam.
Technical Paper

Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

2015-04-14
2015-01-0459
This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980MPa grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.
Technical Paper

Optimization of Diesel Oxidation Catalyst (DOC) on Passenger Cars to Improve Emission Robustness

2015-04-14
2015-01-1013
Emission compliance at the production level has been a challenge for vehicle manufacturers. Diesel oxidation catalyst (DOC) plays a very important role in controlling the emissions for the diesel vehicles. Vehicle manufacturers tend to ‘over design’ the diesel oxidation catalyst to ‘absorb’ the production variations which seems an easier and faster solution. However this approach increases the DOC cost phenomenally which impacts the overall vehicle cost. The main objective of this paper is to address the high variation in CO tail pipe emissions which were observed on a diesel passenger car during development. This variation was posing a challenge in consistently meeting the internal product requirement/specification.
Journal Article

Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

2014-04-01
2014-01-0791
A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.
Journal Article

Fatigue Behavior of Aluminum Alloys under Multiaxial Loading

2014-04-01
2014-01-0972
Fatigue behavior of aluminum alloys under multiaxial loading was investigated with both cast aluminum A356-T6 and wrought alloy 6063-T6. The dominant multiaxial fatigue crack preferentially nucleates from flaws like porosity and oxide films located near the free surface of the material. In the absence of the flaws, the cracking/debonding of the second phase particles dominates the crack initiation and propagation. The number of cracked/debonded particles increases with the number of cycles, but the damage rate depends on loading paths. Among various loading paths studied, the circle loading path shows the shortest fatigue life due to the development of complex dislocation substructures and severe stress concentration near grain/cell boundaries and second phase particles.
Journal Article

Impact of Texture on r-value and its Measurement in Magnesium Alloy Sheets

2014-04-01
2014-01-1014
The impact of texture on r-value and its measurement in magnesium alloy sheets has been studied using digital image correlation and electron backscatter diffraction techniques. Two magnesium alloy sheets with distinct textures were used in the present study, namely, AZ31 with a strong basal texture and ZE21 with a randomized texture. It is well known that a conventionally processed AZ31 magnesium sheet has strong basal texture, necessitating contraction and double twinning to accommodate thinning strain. The strain distribution on the sheet surface evolves nonlinearly with strain, impacting the measured r-value. In particular, the normal approach to measuring r-value based on average strains over the gauge section leads to the erroneous conclusion that r-value increases with deformation. When the r-value is measured locally at any point inside or outside the neck, the r-value is shown to have a constant value of 3 for all strain values.
Technical Paper

A Rough Road Ride Simulation Assessment with Flexible Vehicle Body

2014-04-01
2014-01-0112
A rough road ride assessment provides an insightful evaluation of vehicle responses beyond the frequency range of suspension or steering modes. This is when body structure influence on the vehicle performance can be detected by vehicle occupants. In this paper, a rough road is used to evaluate vehicle ride performance and multi-body simulation (MBS) models are developed along with finite-element (FE) representations of the vehicle body and structure. To produce high fidelity simulation results in the frequency range of interest, various vehicle subsystem modeling contents are examined. A case study of a vehicle model with two different structures is provided. Time histories and frequency based analyses are used to obtain insights into the effects of body structure on vehicle responses. Finally, two metrics (‘Isolation’ and ‘Shake’) are used to distinguish the vehicle ride performance.
Technical Paper

Integrated CAE Methods for Perceived Quality Assurance of Vehicle Outer Panels

2014-04-01
2014-01-0366
Oil canning and initial stiffness of the automotive roofs and panels are considered to be sensitive customer ‘perceived quality’ issues. In an effort to develop more accurate objective requirements, respective simulation methods are continuously being developed throughout automotive industries. This paper discusses a latest development on oil canning predictions using LS-DYNA® Implicit, including BNDOUT request, MORTAR contact option and with the stamping process involved, which resulted in excellent correlations especially when it comes to measurements at immediate locations to the feature lines of the vehicle outer panels. Furthermore, in pursuit of light-weighting vehicles with thinner roofs, a new CAE method was recently developed to simulate severe noise conditions exhibited on some of developmental properties while going through a car wash.
X