Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Effects of pre-chamber specifications on lean burn operation in a pre-chamber engine with fuel reformed gas

2023-09-29
2023-32-0007
Lean combustion has been well known to be an effective method to improve the thermal efficiency. However, leaner mixture is prone to cause the unstable combustion and poorer unburned hydrocarbon (UTHC) emissions. Pre-chamber turbulent jet combustion has been proved to enhance the combustion stability under ultra-lean conditions. However, more NOx is formed during the combustion, resulting in the fact that the tailpipe NOx emission is too high to be still not available for the real application. In this report, in order to achieve a higher air excess ratio while keeping lower UTHC emissions, and especially NOx emission, a new combustion technique which combined pre-chamber jet combustion with fuel reforming was proposed and experimentally demonstrated on a pre-chamber engine.
Technical Paper

Thermal efficiency improvement in twin shaped semi- premixed diesel combustion with a combustion chamber dividing fuel sprays and optimization of fuel ignitability

2023-09-29
2023-32-0051
The authors have reported significant smoke reduction in twin shaped semi-premixed diesel combustion with a newly designed combustion chamber to distribute the first and the second sprays into upper and lower layers. However, the first stage premixed combustion tends to advance far from the TDC, resulting in lowering of thermal efficiencies. In this report, improvement of thermal efficiency by optimizing the combustion phase with lower ignitability fuels was identified with the divided combustion chamber. The experiment was conducted with four fuels with different cetane numbers. The first stage premixed combustion can be retarded to the optimum phase with the fuel with cetane number 38, establishing high efficiencies.
Journal Article

Improvements of Combustion and Emissions in a Natural Gas Fueled Engine with Hydrogen Enrichment and Optimized Injection Timings of the Diesel Fuel

2022-01-09
2022-32-0095
In a natural gas fueled engine ignited by diesel fuel, the addition of hydrogen to the engine could be a possible way to improve thermal efficiency and reduce unburned methane which has a warming potential many times that of carbon dioxide as it promotes a more rapid and complete combustion. This study carried out engine experiments using a single cylinder engine with natural gas and hydrogen delivered separately into the intake pipe, and with pilot-injection of diesel fuel. The percentages of hydrogen in the natural gas-hydrogen mixtures were varied from 0% to 50% of the heat value. The results showed that the hydrogen addition has an insignificant effect on the ignition delay of the diesel fuel and that it shortens the combustion duration. The increase in the hydrogen ratio decreased the unburned hydrocarbon emissions more than the reduction of the amount of natural gas that was replaced by the hydrogen.
Technical Paper

Scenario Uncertainty Modeling for Predictive Maintenance with Recurrent Neural Adaptive Processes (RNAPs)

2021-04-06
2021-01-0191
For commercial-vehicle Original Equipment Manufacturers (OEMs), predictive maintenance has drawn attention for the benefits of money saving and increased road safety. Data-driven models have been widely explored and implemented as predictive maintenance solutions. However, the working scenarios for different commercial-vehicles vary a lot, which makes it difficult to build a universal model suitable for all the cases. In this paper, we propose a Recurrent Neural Adaptive Processes (RNAPs) network to adapt to different scenarios by modeling the uncertain at the same time. The ensemble network combines the traits of neural processes, recurrent neural network and meta learning together. Neural processes consider the context information to calculate the uncertainty and improve the prediction results. Meta-learning works well when dealing with few-shot multi-tasks learning, and recurrent networks are utilized as the encoder of the proposed model to process time-series data.
Technical Paper

Improvement of HC-SCR Performance by Fuel Reforming Using a Low Temperature Oxidation

2021-04-06
2021-01-0591
A fuel reforming technology using a low temperature oxidation was developed to improve a NOx reduction performance of HC-SCR (Hydrocarbons Selective Catalytic Reduction) system, which does not require urea. The low-temperature oxidization of a diesel fuel in gas phase produces NOx reduction agents with high NOx reduction ability such as aldehydes and ketones. A pre-evaporation-premixing-type reformer was adopted in order to generate a uniform temperature field and a uniform fuel/air premixed gas, and to promote the low temperature oxidation efficiently. As a fundamental study, elementary reaction analysis for n-hexadecane/air premixtures was carried out to investigate the suitable reformer temperature and fuel/air equivalence ratio for generation of oxygenated hydrocarbons. It was found that the reforming efficiency was highest at the reforming temperature around 623 to 673K, and aldehydes and ketones were produced.
Technical Paper

Numerical Investigation of Near Nozzle Flash-Boiling Spray in an Axial-Hole Transparent Nozzle

2020-04-14
2020-01-0828
Understanding and prediction of flash-boiling spray behavior in gasoline direct-injection (GDI) engines remains a challenge. In this study, computational fluid dynamics (CFD) simulations using the homogeneous relaxation model (HRM) for not only internal nozzle flow but also external spray were evaluated using CONVERGE software and compared to experimental data. High-speed extinction imaging experiments were carried out in a real-size axial-hole transparent nozzle installed at the tip of machined GDI injector fueled with n-pentane under various ambient pressure conditions (Pa/Ps = 0.07 - 1.39). The width of the spray during injection was assessed by means of projected liquid volume, but the structure and timing for boil-off of liquid within the sac of the injector were also assessed after the end of injection, including cases with different designed sac volumes.
Technical Paper

Research on a DPF Regeneration Burner System for Use when Engine is not in Operation

2019-12-19
2019-01-2237
An on board burner that enables DPF regeneration even when an engine is at standstill has been researched. By employing pre evaporative combustion with a wick burner, miniaturization of the burner system was successfully accomplished as well as stable ignition and combustion. Total heat necessary for DPF regeneration was reduced in comparison to the active DPF regeneration by means of engine control and an oxidation catalyst. Uneven temperature distribution in DPF and excessive temperature rise, which had been recognized as issues in the regeneration of a DPF while engine is at standstill, were solved by increase of combustion air amount and multi-step control of regeneration temperature and reliable regeneration was accomplished.
Technical Paper

Study for ignition characteristics and potential of gasoline autoignition combustion with spark assist

2019-12-19
2019-01-2317
A spark assist system was installed in a gasoline direct-injection single-cylinder test engine with the aim of controlling the ignition timing and accomplishing combustion of gasoline fuel by auto/compression ignition. A primary reference fuel having an octane number of 90 (PRF 90) was used to evaluate experimentally the spark assist function for gasoline auto/compression ignition and to examine the feasibility of combustion with a short ignition delay equivalent to conventional diesel combustion using the engine system. An optically accessible single-cylinder test engine was also used to evaluate and investigate spark-assisted auto/compression ignition. Ignition timing controllability with combinations of spark and injection timings for gasoline auto/compression ignition was also investigated under different operating load conditions.
Technical Paper

Characteristics of Diesel Engine Oil for Heavy Duty Commercial Vehicles Achieving for both Fuel Economy and Reliability

2019-12-19
2019-01-2243
When the engine oil evaporates in the crankcase, it is necessary to discharge to the outside of the engine or returns to the intake air as part of blow-by gas. The amount of oil content in the blow-by gas is preferable to be as small as possible. This paper researched the evaporation characteristics of diesel engine oil for heavy duty into blow-by gas using 5W-30 and 10W-30 engine oils with the equivalent to Noack. As a result, it is found that evaporate phenomenon cannot be explained well enough by just Noack and clarified of the oil evaporation mechanism in blow-by gas.
Technical Paper

A Study of a Lean Homogeneous Combustion Engine System with a Fuel Reformer Cylinder

2019-12-19
2019-01-2177
The Dual-Fuel (DF) combustion is a promising technology for efficient, low NOx and low exhaust particulate matter (PM) engine operation. To achieve equivalent performance to a DF engine with only the use of conventional liquid fuel, this study proposes the implementation of an on-board fuel reformation process by piston compression. For concept verification, DF combustion tests with representative reformed gas components were conducted. Based on the results, the controllability of the reformed gas composition by variations in the operating conditions of the reformer cylinder were discussed.
Journal Article

Influence of Combustion Chamber Shape and In-Cylinder Density on Soot Formation in Diesel Combustion

2019-12-19
2019-01-2271
The change in the smoke emissions from a diesel engine with the shapes of the combustion chamber and the in-cylinder density was investigated with focuses on the mixing and the soot formation in a spray flame. First, the mixing of the fuel and air between the nozzle exit and the set-off length was used as an indicator for the formation of soot. Although this indicator can explain the influence of the density, it cannot explain the changes in the smoke emissions with a change in the shape of the combustion chamber. Next, by focusing on the soot distribution in a quasi-steady-state spray flame, the soot formed in the high-density condition of an optically accessible engine was investigated by applying two-color method. These results showed that the positional relationship between the maximum soot amount position and the flame impinging position can be a major influence on the smoke emissions.
Journal Article

Characteristics of Bending Stress with Whirling at the Rear End of a Crankshaft in an Inline 4-Cylinder High Speed Diesel Engine

2019-06-05
2019-01-1592
As engines become lighter and achieve higher output to meet carbon dioxide emissions targets, it becomes more challenging to design a crankshaft that is both lighter and capable of handling higher loads. Therefore, it is necessary to understand the characteristics of forces imposed on the crankshaft, and the mechanisms by which stresses are created in the crankshaft. This paper describes the characteristics of bending stresses measured on the rearmost crank pin fillet of a crankshaft. Two basic crankshaft resonant modes are described. Forward crankshaft whirl then has the effect of increasing the system natural frequencies by the stiffening effect, while reverse whirl reduces the system natural frequencies by the softening effect. The effect of whirl grows with increasing engine speed. This results in what appears to be four crankshaft natural frequencies rather than two. The four resonances appear at all non-zero engine speeds.
Technical Paper

Effect of Diamond-Like Carbon Coating on Anti-Scuffing Characteristics of Piston Pins

2019-04-02
2019-01-0184
It has been proposed that downspeeding combined with high boost levels would effectively reduce fuel consumption in heavy-duty diesel engines. Under low-speed and high-boost operating conditions, however, the in-cylinder gas pressure, which acts on the piston crown, is greater than the piston inertia force (such that there is no force reversal), over the entire range of crank angles. Therefore, the piston pin never lifts away from the main loading area (the bottom) of the connecting rod small-end bushing where the contact pressure against the piston pin is highest. In such operating conditions, lubricant starvation is easily induced at the interface between the piston pin and small-end bushing. Through carefully devised engine tests, the authors confirmed that the piston pin scuffing phenomenon arises when the boost pressure exceeds a critical value at which the no-force reversal condition appears.
Technical Paper

Kinetic Modeling of Ammonia-SCR and Experimental Studies over Monolithic Cu-ZSM-5 Catalyst

2019-01-15
2019-01-0024
Ammonia-selective catalytic reduction (SCR) systems have been introduced commercially in diesel vehicles, however catalyst systems with higher conversion efficiency and better control characteristics are required to know the actual emissions during operation and the emissions in random test cycles. Computational fluid dynamics (CFD) is an effective approach when applied to SCR catalyst development, and many models have been proposed, but these models need experimental verification and are limited in the situations they apply to. Further, taking account of redox cycle is important to have better accuracy in transient operation, however there are few models considering the cycle. Model development considering the redox reactions in a zeolite catalyst, Cu-ZSM-5, is the object of the research here, and the effects of exhaust gas composition on the SCR reaction and NH3 oxidation at high temperatures are investigated.
Technical Paper

Phenomenological Modeling and Experiments to Investigate the Combined Effects of High Pressure and Multiple Injection Strategies with EGR on Combustion and Emission Characteristics of a CRDI Diesel Engine

2019-01-15
2019-01-0056
Nowadays, due to stringent emission regulations, it is imperative to incorporate modeling efforts with experiments. This paper presents the development of a phenomenological model to investigate the effects of various in-cylinder strategies on combustion and emission characteristics of a common-rail direct-injection (CRDI) diesel engine. Experiments were conducted on a single-cylinder, supercharged engine with displacement volume of 0.55 l at different operating conditions with various combinations of injection pressure, number of injections involving single injection and multiple injections with two injection pulses, and EGR. Data obtained from experiments was also used for model validation. The model incorporated detailed phenomenological aspects of spray growth, air entrainment, droplet evaporation, wall impingement, ignition delay, premixed and mixing-controlled combustion rates, and emissions of nitrogen oxides (NOx) and diesel soot.
Technical Paper

Evaluation of Thermal Environment in Vehicles for Occupant Comfort Using Equivalent Temperature of Thermal Manikin during Start-Stop Function with Energy Storage Evaporators

2018-04-03
2018-01-0059
In recent years, start-stop systems have been implemented by many OEMs for improvement of fuel economy. When the engine stops, the occupant comfort typically deteriorates. Hence, the climate and fuel economy engineers are struggling to combine the passenger comfort and fuel economy. Especially in a vehicle cabin where the thermal environment becomes unsteady and highly non-uniform due to a start-stop. It is difficult to adapt any comfort evaluation index that have already been well established for a stationary/uniform space in building type environment in comparison to a vehicle cabin interior. The existing standard of ISO-14505-2 does not consider this for vehicle cabin interior condition. Hence, the authors have developed the occupant’s comfort prediction method under highly non-uniform condition and unsteady conditions and have established a new methodology [1].
Technical Paper

Improvement in Selective Catalytic Reduction Model Accuracy for Predicting NOx Conversion at High Temperature

2018-04-03
2018-01-0346
As a result of WNTE regulations and the introduction of close-coupled aftertreatment systems, exhaust purification at high temperatures in commercial vehicles has become increasingly important in recent years. In this report, we improve the prediction accuracy for NOx conversion at high temperatures in the kinetic model of conventional Cu-selective catalytic reduction (Cu-SCR). Reaction rate analysis indicated that the rate of NH3 oxidation was extremely low compared to the rate of standard SCR. We found that NOx concentration-dependent NH3 oxidations (termed NOx-assisted NH3 oxidations) were key to the rate of NH3 oxidation. The output of the improved Cu-SCR kinetic model was in agreed with experimental results obtained from the synthetic gas bench and engine dynamometer bench. We analyzed the contribution of each reaction to NH3 consumption during Cu-SCR. Under NH3 + NO + O2, standard SCR was dominant at low temperature.
Technical Paper

Oxidative Deterioration Properties of FAME-Blended Diesel Fuel

2018-04-03
2018-01-0924
The correlation between newly approved EN 15751 and the internal diesel injector deposits (IDID) due to fuel oxidative deterioration has not been made clear. In the present research, the Rancimat method was slightly modified to research the relationship between fuel oxidative deterioration and the deterioration products generated from the fuel. After heating fuel at 120 to 150°C for a set period, insoluble deterioration products (IDID-like substances) were generated and their weights were measured. At the same time, the shifts of the conductivity in trap water were analyzed from a new perspective, and its relationship with the deterioration products was investigated. At 120°C and 130°C, conductivity rising rates after the inflection point (this set of data represents the rate of organic acid generation in the fuel, and we named “Oxidation rate”) exhibited a strong correlation with the quantity of deterioration products.
Journal Article

Chemical Reaction Processes of Fuel Reformation by Diesel Engine Piston Compression of Rich Homogeneous Air-Fuel Mixture

2017-11-15
2017-32-0120
To extend the operational range of premixed diesel combustion, fuel reformation by piston induced compression of rich homogeneous air-fuel mixtures was conducted in this study. Reformed gas compositions and chemical processes were first simulated with the chemistry dynamics simulation, CHEMKIN Pro, by changing the intake oxygen content, intake air temperature, and compression ratio. A single cylinder diesel engine was utilized to verify the simulation results. With the simulation and experiments, the characteristics of the reformed gas with respect to the reformer cylinder operating condition were obtained. Further, the thermal decomposition and partial oxidation reaction mechanisms of the fuel in extremely low oxygen concentrations were obtained with the characteristics of the gas production at the various reaction temperatures.
Technical Paper

Development of CNG/Diesel Dual-Compatible Engine Oil for Heavy-Duty Trucks in Thailand

2017-10-08
2017-01-2350
In Thailand, most heavy-duty trucks were equipped with diesel engine, while a small portion was equipped with compressed natural gas (CNG) engine. However, in the past few years the number of CNG fuel trucks in Thailand has increased significantly due to the cheaper cost of CNG. In general, the emphasis of heavy-duty diesel engine oil performance is on piston cleanliness and soot handling properties, while thermal and anti-oxidation properties are most critical for CNG engine oil performance. For truck fleet owners who operate both types of trucks, using the inappropriate oil that is not fit-for-purpose can adversely affect engine performance and reduce engine service lifespan under prolonged usage. A novel CNG/diesel engine oil was developed to meet both JASO DH-2 heavy-duty diesel engine oil performance and CNG engine oil performance. The candidate formulation was proved adequately fit for practical use regarding to thermal and anti-oxidation properties.
X