Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a Riding Simulator for Motorcycles

2018-10-30
2018-32-0031
We developed the motorcycles based on RIDEOLOGY (Ride + Ideology) concept. In the past, the “Ride” was studied by a sensory evaluation with actual driving. However, the recent progress in numerical analysis, there have been developed driving simulators. It allows more quantitative measurement in a sensory evaluation. Therefore, we also developed a riding simulator specialized for motorcycles. In order to develop such riding simulator, there are some technical challenges for motorcycles. First, we need to reproduce roll motion height of motorcycles. Compared to four-wheeled vehicles, motorcycles have a higher center of rotation. Second, we need to reproduce vehicle motion control by rider’s changing body position. A rider controls vehicle’s lean by shifting his center of gravity. Therefore, it is necessary to construct a measurement system of rider’s body position. Third, we need to improve senses of speed and reality.
Technical Paper

Enhancement of Thermal Fatigue Strength by the Addition of Calcium to Hypoeutectic Aluminum-Silicon Alloys

2018-10-30
2018-32-0027
Several elements affect the structure of eutectic silicon in hypoeutectic aluminum alloys [1, 2, 3, 4]. Among them, calcium has been investigated to a lesser extent compared to the typically used sodium and strontium. In order to enhance the thermal fatigue strength of a small engine, the morphology of eutectic silicon in hypoeutectic aluminum-silicon alloys is controlled by the addition of calcium. In addition, the castability and mechanical properties are investigated. Hence, samples containing different amounts of calcium are prepared at different cooling rates during solidification. The results revealed that, with the increase in the calcium amount and the cooling rate, eutectic silicon exhibits a fine morphology in cross-sectional images. Particularly, with the addition of at least 62 mass ppm of calcium in a specific range of cooling rates, refined eutectic silicon is obtained.
Technical Paper

Development of the Compact and Light Wheel Forces and Moments Sensor for Motorcycles

2016-11-08
2016-32-0053
Owing to the recent developments in sensors with reduced size and weight, it is now possible to install sensors on a body of a motorcycle to monitor its behavior during running. The analysis of maneuverability and stability has been performed based on the data resulted from measurements by these sensors. The tire forces and moments is an important measurement item in maneuverability and stability studies. However, the tire forces and moments is difficult to measure directly, therefore, it is a common practice to measure the force and the moment acting on the center of the wheel. The measuring device is called a wheel forces and moments sensor, and it is widely used for cars. The development of a wheel forces and moments sensor for motorcycles has difficulty particular to motorcycles. First, motorcycles run with their bodies largely banked, which restricts positioning the sensors.
Journal Article

Acceleration Performance Analysis for Rubber V-Belt CVT with Belt Tension Clutching

2015-11-17
2015-32-0731
The power train system for Utility Vehicles (UVs) or All-Terrain Vehicles (ATVs) mainly consists of a rubber V-belt CVT. The adjustment of the CVT specification requires many steps to realize the shifting operations of the CVT so as to satisfy the acceleration feeling of the driver. In this paper, we report on the simulation technology that predicts the transient behavior during an acceleration of the vehicle equipped with a belt tension clutching CVT, which has both functions of the shift operation and the clutch action. By using the developed simulation technique, it has become possible to adjust the CVT specifications efficiently.
Technical Paper

Development of Fatigue Durability Evaluation Technology for Motorcycle Frame

2015-11-17
2015-32-0811
In the development of a motorcycle frame, the balance between high performance and reliability and a short development period are important. In this study, a fatigue durability evaluation technique for a motorcycle frame was developed to enable highly accurate development within a short period of time. Furthermore, we developed a shaking table excitation system as a means to supplement the road test.
Technical Paper

Refill Friction Spot Joining for Aerospace Application

2015-09-15
2015-01-2614
In the modern aircraft manufacturing, the cost reduction, the manufacturing time reduction, and the weight saving of aircraft are strongly demanded. The Refill Friction Spot Joining [1,2](FSJ, in other words FSSW, Friction Stir Spot Welding), which is one of innovative solid-state joining methodologies based on the Friction Stir Welding[3], is a promising technology that can replace rivets and fasteners. This technology is expected to offer cost reduction and weight saving for the aircraft manufacturing. In this study, to make stronger and reliable joints, the shoulder-plunging process of Refill FSJ was employed. The weldability of the Alodine or Chromic Acid Anodize coated materials along with a faying-surface sealant was investigated. The joint properties, such as tensile shear strengths and corrosion resistance, were evaluated.
Technical Paper

A Study of Electric Motorcycle

2014-11-11
2014-32-0012
As for automobile, the mass production period of Electric Vehicle(EV) has begun by the rapid progress of the battery performance. But for EV- Motorcycle(MC), it is limited for the venture companies' releases. The design and evaluation methodologies are not yet established or standardized so far. This paper provides the practical and the experimental examples. To study the feasibility of EV-MC, we developed the prototypes in the present technical and suppliers' parts environments, and evaluated them by the practical view of the MC usage. The developed EV-MC has the equivalent driving performance of the 250cc internal combustion engine(ICE)-MC and a cruising range of 100km in normal use. In the prototype development, the reliability and the ability of protection design of the battery in the whole vehicle against the environmental loads are mainly studied, especially, heat and cold, water, shock, and the accident impact.
Technical Paper

Development of a Drill Bit for CFRP/Aluminum-Alloy Stack: To Improve Flexibility, Economical Efficiency and Work Environment

2013-09-17
2013-01-2227
In the expansion of composite material application, it is one of the most important subjects in assembly of aircraft structure how drilling of composite/metal stack should be processed in an efficient way. This paper will show the result of development of a drill bit for CFRP/Aluminum-alloy stack by Kawasaki Heavy Industries (KHI) and Sumitomo Electric Hardmetal (SEH). In order to improve workability and economic performance, the drill bit which enables drilling CFRP/Al-alloy stack: at 1 shot; from both directions; without air blow and coolant (just usual vacuuming); was required. A best mix drill bit which has smooth multi angles edge and pointed finishing edge was produced as a result of some trials. Developed drill bit achieved required performance and contributed to large cost reduction, labor hour saving, production speed increase and work environment improvement.
Technical Paper

Stability Control of Motorcycle

2011-11-08
2011-32-0558
We developed active control more suitable for sports riding than the previous electronic stability control system for enjoying sports riding by many users. One of them, the traction control system S-KTRC (Sports Kawasaki TRaction Control) uses the sensor output like not only the slippage calculated from the front and rear wheel speed but also engine speed, throttle position, and gear position etc. As the result, conditions of the motorcycle and rider's intention are calculated by ‘Motorcycle model’ in the ECU continuously. By this ‘Motorcycle model’, S-KTRC confirms the real time conditions and predicts the succeeded condition, every 5milliseconds to decide to govern torque. The ABS system KIBS (Kawasaki Intelligent anti-lock Brake System), it is possible to control the rear wheel's lift by using the pressure data of the front brake at the sudden braking operation.
Technical Paper

Prediction of Vibration Fatigue Life for Motorcycle Exhaust Systems

2011-11-08
2011-32-0642
In this study, the technology that can predict fatigue life for motorcycle exhaust systems is developed. To predict the fatigue life, analyzing the engine vibration, modeling the vibration characteristics of exhaust systems and evaluating the fatigue damage of welded joints are considered essential. This paper shows an integrated numerical simulation and evaluation method. Furthermore, it is also shown with the result of a component vibration test of the muffler assembly to validate the technology. The results indicate a good correlation between the numerical simulation and the test.
Technical Paper

Optimal Motorcycle Configuration with Performance Limitations

2007-10-30
2007-32-0123
Motorcycle configurations, such as CG (center of gravity) location, have come to be fixed to the current ones by trial and error since motorcycle was born. Generally motorcycles' ratio of CG height to wheelbase is relatively higher than four-wheel cars'. We have analyzed the optimal motorcycle CG location with relatively simple formulas, which we have derived to calculate the maximum acceleration with three performance limitations and calculate the maximum speed and the shortest time to run through a course. The results show that the calculated speed is significantly close to actual sport motorcycle's and that the optimal CG locations for various courses are bounded in a certain limited area which is near actual sport motorcycle's.
Technical Paper

Increasing of Seizure Durability of Shift Fork Using Surface Treatment

2005-10-12
2005-32-0020
In line with the increase in the output of motorcycle engines, there has been an increase in incidents of the seizure between shift fork and gear because of the increased thrust force. We designed a test method that uses actual shift forks to simulate actual sliding conditions, then used that test method to evaluate the feature of the shift fork sliding and the different shift fork surface treatments. The shift fork slid against the gear not as surface contact but as tilted contact. We selected the candidates from the view that the surface treatment of the shift fork contact surface to give it higher seizure resistance when in tilted contact is required. We evaluated chromium nitride thin film, diamond-like carbon thin film, molybdenum sprayed coating, and sulphonitriding, and molybdenum sprayed coating exhibited the highest seizure resistance. The conformability plays a significant role in the sliding between the shift fork and the gear.
Technical Paper

Development of a Magnesium Swing Arm for Motorcycles

2004-09-27
2004-32-0048
In order to improve the fuel efficiency and the operating performance of motorcycles, there is a need to reduce their weight. Magnesium, which is the lightest of the various metals currently being used and has a high specific strength, has the potential to satisfy that need. We conducted a study to clarify the weldability and strength characteristics of, and the most suitable surface treatment for, extruded magnesium alloys and rolled magnesium alloys. Based on the stress analysis by the finite element method, we designed a magnesium swing arm and produced the prototype swing arm by pressing hot rolled AZ31 magnesium alloy plates and welding them. The prototype is about 10% lighter and has higher torsional rigidity than a conventional aluminum swing arm.
Technical Paper

Development of Spraying Technology for Improving the Wear Resistance of Engine Cylinder Bores

2003-09-15
2003-32-0066
In response to design requirements for lower weight and higher output, the motorcycle engine cylinder block has evolved from a cast cylinder block to an aluminum alloy cylinder block whose bore walls are surface-treated for wear-resistance. Hard-chromium plating, nickel-compound plating, and the like are in wide use as the wear-resistance surface treatment method, but spray technology has recently been attracting attention because of less impact on the environment, superior initial running-in performance and good oil retention. We have been applying a unique spraying method called wire explosion spraying to those models with a special need for wear-resistance surface. In this report we describe our wire explosion spray technology. With the aim of improving the bond strength of the sprayed coat, we studied the effects of the collided particles' form on bond strength in the wire explosion spraying conditions.
Technical Paper

Analysis of Disk Brake Squeal Using Substructure Synthesis Method

2003-09-15
2003-32-0042
This paper describes a numerical analysis method for predicting the brake squeal using the Substructure Synthesis Method. This method is more accurate than the classical method based on the mass-spring system, and simpler than the analysis of all the brake system by FEM. The squeal studied here is focused the one occurring in the low frequency range and its mechanism is due the structural instability of the brake assembly. First, some experiments were carried out in order to grasp the brake squeal phenomenon. These experiments made clear the following items. (1) The low frequency brake squeal occurred at 850Hz. (2) The vibration mode shape had 5 nodes fixed in a space. (3) The brake squeal became maximum at 0.3 - 0.5 (MPa) liquid pressure under the constant temperature condition. (4) The higher the temperature of the pad was, the stronger the brake squeal was under the constant liquid pressure condition.
Technical Paper

A Study of Direct Injection Diesel Engine Fueled with Hydrogen

2003-03-03
2003-01-0761
In this study, characteristics of the development and auto-ignition/combustion of hydrogen jets were investigated in a constant-volume vessel. The authors focused on the effects of the jet developing process and thermodynamic states of the ambient gas on auto-ignition delays of hydrogen jets. The results show that the ambient gas temperature and nozzle-hole diameter are significantly effective parameters. By contrast, it is clarified that the ambient gas oxygen concentration has a weak effect on the auto-ignition/combustion of hydrogen jets. Consequently, it is supposed that the mixture formation process is capable of improving the auto-ignition/combustion of hydrogen jets.
Technical Paper

Prediction of Transmission Loss for Motorcycle Muffler

1999-09-28
1999-01-3256
This paper describes the predicted results of acoustic transmission loss (T.L.) for a motorcycle muffler. First, the T.L. of a prototype muffler with one expansion chamber was obtained by measuring sound levels at the inlet and outlet ports of the muffler by speaker test. T.L. was then calculated by using a three-dimensional Finite-Element Method (FEM) for acoustic fields in the muffler. There was good coincidence between the calculated T.L. and experimentally observed data. Second, T.L. of the prototype muffler while attached to a motorcycle engine was measured. On this step, however, a similarly calculated T.L. using FEM to consider the effect of exhaust gas temperature in the muffler showed differences from the measured one. It was estimated that muffler body vibration sounds may affect the result. A dynamic analysis of the structure was carried out using FEM to obtain the eigen modes of the muffler body.
Technical Paper

Improvement of Wear Resistance of Cam Shaft and Rocker Arm at 4-Cycle Engines

1999-09-28
1999-01-3296
The rocker arm has a function to lead the cam shaft rotation to the valve operation. There are cases when damages are caused due to abnormal wear at the sliding part, causing certain problems. Authors classified the wear phenomenon, and realized a systematic analysis on the possible cause of the damage. As a result, it was revealed that the damage was of two types, and to prevent the hard wear, it is effective to apply shot peening before plating. The prototype rocker arm was test under various lubricating conditions, thus actually confirming that the occurrence of wear was largely reduced.
Technical Paper

Research on the Performance of a Waterjet Propulsor for Personal Watercrafts

1999-09-28
1999-01-3264
A waterjet propulsor has come to be used more popularly for high speed watercrafts such as personal watercrafts. The most difficult problem for designing the waterjet system is that a tradeoff is required to properly determine the best parameters for the waterjet pump and subsequently the best overall propulsion system. This paper presents the design method and performance improvement of the waterjet propulsor used for personal watercrafts. The authors have clarified the performance of the individual component in the waterjet propulsor and improved the component efficiency empirically, and established the method to estimate the thrust and power characteristics of the propulsor on board from the component test results and other design parameters, which enables the optimization of the waterjet system.
Technical Paper

Application of Active Control Technologies and Structural Optimization for Supersonic Commercial Transport

1996-10-01
965560
A design procedure is presented which utilizes (1) the active control technologies such as Flutter Mode Control, Gust Load Alleviation and Maneuver Load Control to relax the strength and stiffness requirements on wing structure, and (2) structural optimization to derive the minimum weight composite wing structures satisfying the relaxed structural requirements. The design procedure is applied to the preliminary design study of a Supersonic Commercial Transport configuration with laminated composite wing structure. Four design configurations are compared. Maximum of about 30% structural weight reduction was achieved from the quasi-isotropic design. Also some insights on the characteristics of the Supersonic Commercial Transport configuration are discussed.
X