Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Quantifying Uncertainty in Predictions of Kinetically Modulated Combustion: Application to HCCI Using a Detailed Transportation Fuel Model

2018-04-03
2018-01-1251
Simulation of chemical kinetic processes in combustion engine environments has become ubiquitous towards the understanding of combustion phenomenology, the evaluation of controlling parameters, and the design of configurations and/or control strategies. Such calculations are not free from error however, and the interpretation of simulation results must be considered within the context of uncertainties in the chemical kinetic model. Uncertainties arise due to structural issues (e.g., included/missing reaction pathways), as well as inaccurate descriptions of kinetic rate parameters and thermochemistry. In fundamental apparatuses like rapid compression machines and shock tubes, computed constant-volume ignition delay times for simple, single-component fuels can have variations on the order of factors of 2-4.
Journal Article

Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

2017-03-28
2017-01-0671
Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
Technical Paper

Acceleration of Detailed Chemical Kinetics Using Multi-zone Modeling for CFD in Internal Combustion Engine Simulations

2012-04-16
2012-01-0135
Detailed chemical kinetics, although preferred due to increased accuracy, can significantly slow down CFD combustion simulations. Chemistry solutions are typically the most computationally costly step in engine simulations. The calculation time can be significantly accelerated using a multi-zone combustion model. The multi-zone model is integrated into the CONVERGE CFD code. At each time-step, the CFD cells are grouped into zones based on the cell temperature and equivalence ratio. The chemistry solver is invoked only on each zone. The zonal temperature and mass fractions are remapped onto the CFD cells, such that the temperature and composition non-uniformities are preserved. Two remapping techniques published in the literature are compared for their relative performance. The accuracy and speed-up of the multi-zone model is improved by using variable bin sizes at different temperature and equivalence ratios.
Journal Article

Detailed Kinetic Modeling of HCCI Combustion with Isopentanol

2011-09-11
2011-24-0023
Isopentanol is an advanced biofuel that can be produced by micro-organisms through genetically engineered metabolic pathways. Compared to the more frequently studied ethanol, isopentanol's molecular structure has a longer carbon chain and includes a methyl branch. Its volumetric energy density is over 30% higher than ethanol, and it is less hygroscopic. Some fundamental combustion properties of isopentanol in an HCCI engine have been characterized in a recent study by Yang and Dec (SAE 2010-01-2164). They found that for typical HCCI operating conditions, isopentanol lacks two-stage ignition properties, yet it has a higher HCCI reactivity than gasoline. The amount of intermediate temperature heat release (ITHR) is an important fuel property, and having sufficient ITHR is critical for HCCI operation without knock at high loads using intake-pressure boosting. Isopentanol shows considerable ITHR, and the amount of ITHR increases with boost, similar to gasoline.
Technical Paper

Detailed Chemical Kinetic Modeling of Iso-octane SI-HCCI Transition

2010-04-12
2010-01-1087
We describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (SI) combustion to homogenous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study we assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scenario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. We find that the model captures many of the important experimental trends, including stable SI combustion at low EGR (~0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR (~0.75).
Journal Article

Understanding the Chemical Effects of Increased Boost Pressure under HCCI Conditions

2008-04-14
2008-01-0019
One way to increase the load range in an HCCI engine is to increase boost pressure. In this modeling study, we investigate the effect of increased boost pressure on the fuel chemistry in an HCCI engine. Computed results of HCCI combustion are compared to experimental results in a HCCI engine. We examine the influence of boost pressure using a number of different detailed chemical kinetic models - representing both pure compounds (methylcyclohexane, cyclohexane, iso-octane and n-heptane) and multi-component models (primary reference fuel model and gasoline surrogate fuel model). We examine how the model predictions are altered by increased fueling, as well as reaction rate variation, and the inclusion of residuals in our calculations. In this study, we probe the low temperature chemistry (LTC) region and examine the chemistry responsible for the low-temperature heat release (LTHR) for wide ranges of intake boost pressure.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

Effects of Toluene Addition to Primary Reference Fuel at High Temperature

2007-10-29
2007-01-4104
The ignition delay times of primary reference fuel (PRF) and toluene mixtures have been measured behind the reflected shock waves. The range of experiments covered combustion of fuel in diluted argon for stoichiometric mixtures, pressures of 2.5 atm, temperatures from 1200-1600 K, 0.4% of fuel concentration. The ignition delay times of n-heptane increased with the addition of toluene. However the ignition delay times of iso-octane decreased with the addition of toluene from 0 to 50% and increased from 50 to 100%. A detailed kinetic model with cross reactions considered in this study can not reproduce the trend of ignition delay times for iso-octane/toluene mixtures. From the reaction path analysis, it was suggested that cross reactions between alkenes and aromatics are required to account for these experimental results.
Technical Paper

Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine

2005-10-24
2005-01-3741
Gasoline consists of many different classes of hydrocarbons, such as paraffins, olefins, aromatics, and cycloalkanes. In this study, a surrogate gasoline reaction mechanism is developed, and it has one representative fuel constituent from each of these classes. These selected constituents are iso-octane, n-heptane, 1-pentene, toluene, and methyl-cyclohexane. The mechanism was developed in a step-wise fashion, adding submechanisms to treat each fuel component. Reactions important for low temperature oxidation (<1000K) and cross-reactions among different fuels are incorporated into the mechanism. The mechanism consists of 1328 species and 5835 reactions. A single-zone engine model is used to evaluate how well the mechanism captures autoignition behavior for conditions corresponding to homogeneous charge compression ignition (HCCI) engine operation.
Technical Paper

Fuel and Additive Characterization for HCCI Combustion

2003-05-19
2003-01-1814
This paper shows a numerical evaluation of fuels and additives for HCCI combustion. First, a long list of candidate HCCI fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCI conditions. Log(p)-Log(T) maps illustrate important processes during HCCI engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCI combustion and may play a significant role in controlling HCCI combustion.
Technical Paper

Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver

2003-05-19
2003-01-1821
This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine.
Technical Paper

A Computer Generated Reduced Iso-Octane Chemical Kinetic Mechanism Applied to Simulation of HCCI Combustion

2002-10-21
2002-01-2870
This paper shows how a computer can systematically remove non-essential chemical reactions from a large chemical kinetic mechanism. The computer removes the reactions based upon a single solution using a detailed mechanism. The resulting reduced chemical mechanism produces similar numerical predictions significantly faster than predictions that use the detailed mechanism. Specifically, a reduced chemical kinetics mechanism for iso-octane has been derived from a detailed mechanism by eliminating unimportant reaction steps and species. The reduced mechanism has been developed for the specific purpose of fast and accurate prediction of ignition timing in an HCCI engine. The reduced mechanism contains 199 species and 383 reactions, while the detailed mechanism contains 859 species and 3606 reactions. Both mechanisms have been used in numerical simulation of HCCI combustion.
Technical Paper

Equivalence Ratio-EGR Control of HCCI Engine Operation and the Potential for Transition to Spark-Ignited Operation

2001-09-24
2001-01-3613
This research investigates a control system for HCCI engines, where equivalence ratio, fraction of EGR and intake pressure are adjusted as needed to obtain satisfactory combustion. HCCI engine operation is analyzed with a detailed chemical kinetics code, HCT (Hydrodynamics, Chemistry and Transport), that has been extensively modified for application to engines. HCT is linked to an optimizer that determines the operating conditions that result in maximum brake thermal efficiency, while meeting the peak cylinder pressure restriction. The results show the values of the operating conditions that yield optimum efficiency as a function of torque and rpm. The engine has high NOx emissions for high power operation, so the possibility of switching to stoichiometric operation for high torque conditions is considered. Stoichiometric operation would allow the use of a three-way catalyst to reduce NOx emissions to acceptable levels.
Technical Paper

1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation

2001-05-07
2001-01-1894
We present the effect of EGR, at a set fuel flow rate and intake temperature, on the operating parameters of timing of combustion, duration of combustion, power output, thermal efficiency, and NOx emission; which is remarkably low. We find that addition of EGR at constant inlet temperature and constant fuel flow rate has little effect on HCCI parameter of start of combustion (SOC). However, burn duration is highly dependent on the amount of EGR inducted. The experimental setup at UC Berkeley uses a 1.9-liter 4-cylinder diesel engine with a compression ratio of 18.8:1 (offered on a 1995 VW Passat TDI). The engine was converted to run in HCCI mode by addition of an 18kW air pre-heater installed in the intake system. Pressure traces were obtained using four water-cooled quartz pressure transducers, which replaced the Diesel fuel injectors. Gaseous fuel (propane or butane) flowed steadily into the intake manifold.
Technical Paper

Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

2001-05-07
2001-01-1895
A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbo-charged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm.
Technical Paper

A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion

2001-03-05
2001-01-1027
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. This methodology combines a detailed fluid mechanics code with a detailed chemical kinetics code. Instead of directly linking the two codes, which would require an extremely long computational time, the methodology consists of first running the fluid mechanics code to obtain temperature profiles as a function of time. These temperature profiles are then used as input to a multi-zone chemical kinetics code. The advantage of this procedure is that a small number of zones (10) is enough to obtain accurate results. This procedure achieves the benefits of linking the fluid mechanics and the chemical kinetics codes with a great reduction in the computational effort, to a level that can be handled with current computers.
Technical Paper

HCCI Engine Control by Thermal Management

2000-10-16
2000-01-2869
This work investigates a control system for HCCI engines, where thermal energy from exhaust gas recirculation (EGR) and compression work in the supercharger are either recycled or rejected as needed. HCCI engine operation is analyzed with a detailed chemical kinetics code, HCT (Hydrodynamics, Chemistry and Transport), that has been extensively modified for application to engines. HCT is linked to an optimizer that determines the operating conditions that result in maximum brake thermal efficiency, while meeting the restrictions of low NOx and peak cylinder pressure. The results show the values of the operating conditions that yield optimum efficiency as a function of torque and RPM. For zero torque (idle), the optimizer determines operating conditions that result in minimum fuel consumption. The optimizer is also used for determining the maximum torque that can be obtained within the operating restrictions of NOx and peak cylinder pressure.
Technical Paper

HCCI in a CFR Engine: Experiments and Detailed Kinetic Modeling

2000-03-06
2000-01-0328
Single cylinder engine experiments and chemical kinetic modeling have been performed to study the effect of variations in fuel, equivalence ratio, and intake charge temperature on the start of combustion and the heat release rate. Neat propane and a fuel blend of 15% dimethyl-ether in methane have been studied. The results demonstrate the role of these parameters on the start of combustion, efficiency, imep, and emissions. Single zone kinetic modeling results show the trends consistent with the experimental results.
X