Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Study of Biodiesel and Biodiesel Petroleum Diesel Blends to Mitigate Filter Blocking

2023-09-29
2023-32-0131
There are many anthropogenic climate change mitigation strategies being adopted worldwide. One of these is the adoption of biodiesel FAME (Fatty Acid Methyl Ester), in transportation. The fuel has been widely promoted as replacement for petroleum diesel because of its potential benefits for life cycle greenhouse gas emissions, carbon dioxide reduction and particulate matter improvements. Presently biodiesel may be made from a wide variety of starting materials, including food waste and agricultural materials such as vegetable oils and greases. The number and variety of possible starting materials continues to increase. Though, there is a limiting factor in the use of FAME, and that is cold weather operability. The regional climate can often influence FAME adoption with resultant economic and environmental implications. Often this cold temperature operability manifests itself as in vehicle fuel filter blocking.
Technical Paper

Upstream Disturbance Effects on Self-Similarity in the Wake of a DrivAer Model

2023-04-11
2023-01-0014
This study aims to provide an understanding of self-similarity in the turbulent wake generated by a Fastback DrivAer automotive model and assess the impact of upstream disturbances on the wake. The disturbances are generated using a circular cylinder placed five cylinder diameters upstream. Multiple ‘cylinder-model’ positions were tested by offsetting the lateral positioning of the cylinder with respect to the centreline of the model. Data was obtained at cross-planes in the wake going from 25% to 100% car length. Wind tunnel data has been obtained using a total pressure probe rake and a four-hole cobra probe. Data has also been obtained using RANS based simulations with k – ε realisable turbulence model. Mean axial-component velocity profiles were analysed with momentum thickness (θ) and vorticity thickness (δω) used as the scaling parameters. It was seen that self-similarity marginally exists in the wake depending on the upstream conditions and the scaling parameter.
Journal Article

The Introduction of MultiWake - An Adaptable Bluff-Body Wake Emulator for Ground Vehicle Studies

2023-04-11
2023-01-0953
The rise of autonomous technologies may reflect on new vehicle traffic characteristics, likely reducing vehicle-to-vehicle proximity and emerging platooning formations. Energy consumption, stability, and surface contamination are relevant factors that are sensitive to aerodynamic interference while platooning. From the experimental perspective, most wind tunnels were originally designed to host isolated models, and these constraints often limit the investigation of multiple full-body vehicle formations (e.g. test section length, moving ground dimensions, standard testing points). This paper introduces the ‘MultiWake’ model - a parametric bluff-body device based on a morphing concept, which can emulate the aerodynamic wake characteristics of different vehicle classes.
Technical Paper

Investigations Regarding the Causes of Filter Blocking in Diesel Powertrains

2022-08-30
2022-01-1069
Developed by Rudolph Diesel in the 1890s, the diesel powertrain is used in many applications worldwide. For significant time the engine fuel source for these engines was petroleum diesel, until new legislation regarding emission reduction and smog mitigation saw the introduction of petroleum diesel and biodiesel (Fatty acid methyl ester; FAME) blends in the early 2000s. Since then there have been many instances of filters in diesel powertrains across heavy, light and off-road platforms becoming blocked with unidentified material, for example in the United States, Northern Europe and Scandinavia. Filters are designed to remove contaminants from the fuel system and as the filter becomes plugged it restricts the fuel flow resulting in loss of engine power and eventual breakdown. Understanding The nature of the material responsible for such blockages is clearly important to the industry and has been the subject of many studies.
Technical Paper

The Investigation of the Structure and Origins of Gasoline Direct Injection (GDI) Deposits.

2019-12-19
2019-01-2356
The legislative pressures on environmental targets combined with fuel economy requirements have led to the GDI engine enjoying a renaissance. This is because the technology is considered to be the leader in meeting those requirements. However it is also recognized that the engine suffers from injector deposits (ID) and that understanding the formation of and characterization of such deposits is required. This study will deal with the characterization and morphology of injector deposits as well as the fuel constituents leading to such deposits. A number of analytical techniques were used to undertake this such as Scanning Electron microscopy and X-ray Fluorescence (SEM/EDS) mapping with Fourier Transform Infra-red mapping, in conjunction with mass spectrometry studies. Further, work will be described regarding new deposit control additives (DCAs) for GDI which are more effective than traditional DCAs.
Technical Paper

Development of an Autonomous Battery Electric Vehicle

2019-01-18
2019-01-5000
Autonomous vehicles have been shown to increase safety for drivers, passengers, and pedestrians and can also be used to maximize traffic flow, thereby reducing emissions and congestion. At the same time, governments around the world are promoting the usage of battery electric vehicles (BEVs) to reduce and control the emissions of CO2. This has made the development of autonomous vehicles and electric vehicles a very active research area and has prompted a significant amount of government funding. This article presents the detailed design of a low-cost platform for the development of an autonomous electric vehicle. In particular, it focuses on the design of the electrical architecture and the control strategy, tailored around the usage of affordable sensors and actuators. The specifications of the components are extensively discussed in relation to the performance target.
Technical Paper

On the Aerodynamics of an Enclosed-Wheel Racing Car: An Assessment and Proposal of Add-On Devices for a Fourth, High-Performance Configuration of the DrivAer Model

2018-04-03
2018-01-0725
A modern benchmark for passenger cars - DrivAer model - has provided significant contributions to aerodynamics-related topics in automotive engineering, where three categories of passenger cars have been successfully represented. However, a reference model for high-performance car configurations has not been considered appropriately yet. Technical knowledge in motorsport is also restricted due to competitiveness in performance, reputation and commercial gains. The consequence is a shortage of open-access material to be used as technical references for either motorsport community or academic research purposes. In this paper, a parametric assessment of race car aerodynamic devices are presented into four groups of studies. These are: (i) forebody strakes (dive planes), (ii) front bumper splitter, (iii) rear-end spoiler, and (iv) underbody diffuser.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Journal Article

The Application of New Approaches to the Analysis of Deposits from the Jet Fuel Thermal Oxidation Tester (JFTOT)

2017-10-08
2017-01-2293
Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
Technical Paper

Conditional Moment Closure Modelling for Dual-Fuel Combustion Engines with Pilot-Assisted Compression Ignition

2017-10-08
2017-01-2188
Dual-fuel combustion is an attractive approach for utilizing alternative fuels such as natural gas in compression-ignition internal combustion engines. In this approach, pilot injection of a more reactive fuel provides a source of ignition for the premixed natural gas/air. The overall performance combines the high efficiency of a compression-ignition engine with the relatively low emissions associated with natural gas. However the combustion phenomena occurring in dual-fuel engines present a challenge for existing turbulent combustion models because, following ignition, flame propagates through a partially-reacted and inhomogeneous mixture of the two fuels. The objective of this study is to test a new modelling formulation that combines the ability of the Conditional Moment Closure (CMC) approach to describe autoignition of fuel sprays with the ability of the G-equation approach to describe the subsequent flame propagation.
Journal Article

A Global Optimal Energy Management System for Hybrid Electric off-road Vehicles

2017-03-28
2017-01-0425
Energy management strategies greatly influence the power performance and fuel economy of series hybrid electric tracked bulldozers. In this paper, we present a procedure for the design of a power management strategy by defining a cost function, in this case, the minimization of the vehicle’s fuel consumption over a driving cycle. To explore the fuel-saving potential of a series hybrid electric tracked bulldozer, a dynamic programming (DP) algorithm is utilized to determine the optimal control actions for a series hybrid powertrain, and this can be the benchmark for the assessment of other control strategies. The results from comparing the DP strategy and the rule-based control strategy indicate that this procedure results in approximately a 7% improvement in fuel economy.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

Comparison of the Far-Field Aerodynamic Wake Development for Three DrivAer Model Configurations using a Cost-Effective RANS Simulation

2017-03-28
2017-01-1514
The flow field and body aerodynamic loads on the DrivAer reference model have been extensively investigated since its introduction in 2012. However, there is a relative lack of information relating to the models wake development resulting from the different rear-body configurations, particularly in the far-field. Given current interest in the aerodynamic interaction between two or more vehicles, the results from a preliminary CFD study are presented to address the development of the wake from the Fastback, Notchback, and Estateback DrivAer configurations. The primary focus is on the differences in the far-field wake and simulations are assessed in the range up to three vehicle lengths downstream, at Reynolds and Mach numbers of 5.2×106 and 0.13, respectively. Wake development is modelled using the results from a Reynolds-Averaged Navier-Stokes (RANS) simulation within a computational mesh having nominally 1.0×107 cells.
Technical Paper

Complete Body Aerodynamic Study of three Vehicles

2017-03-28
2017-01-1529
Cooling drag, typically known as the difference in drag coefficient between open and closed cooling configurations, has traditionally proven to be a difficult flow phenomenon to predict using computational fluid dynamics. It was seen as an academic yardstick before the advent of grille shutter systems. However, their introduction has increased the need to accurately predict the drag of a vehicle in a variety of different cooling configurations during vehicle development. This currently represents one of the greatest predictive challenges to the automotive industry due to being the net effect of many flow field changes around the vehicle. A comprehensive study is presented in the paper to discuss the notion of defining cooling drag as a number and to explore its effect on three automotive models with different cooling drag deltas using the commercial CFD solvers; STARCCM+ and Exa PowerFLOW.
Technical Paper

Full Vehicle Aero-Thermal Cooling Drag Sensitivity Analysis for Various Radiator Pressure Drops

2016-04-05
2016-01-1578
Simulations are presented which fully couple both the aerodynamics and cooling flow for a model of a fully engineered production saloon car (Jaguar XJ) with a two-tier cooling pack. This allows for the investigation of the overall aerodynamic impact of the under-hood cooling flow, which is difficult to predict experimentally. The simulations use a 100 million-element mesh, surface wrapped and solved to convergence using a commercially available RANS solver (STARCCM+). The methodology employs representative boundary conditions, such as rotating wheels and a moving ground plane. A review is provided of the effect of cooling flows on the vehicle aerodynamics, compared to published data, which suggest cooling flow accounts for 26 drag counts (0.026 Cd). Further, a sensitivity analysis of the pressure drop curves used in the porous media model of the heat exchangers is made, allowing for an initial understanding of the effect on the overall aerodynamics.
Journal Article

Mechanistic Model for the Breakup Length in Jet Atomization

2016-03-14
2016-01-9042
In jet atomization, breakup length is the length of the continuous jet segment, before its breakup to discontinuous droplets. Hydrodynamic instability theory, implemented in CFD codes, is often complemented by semi-empirical correlations for breakup length, which may limit parametric investigations. A basic mechanistic approach to the breakup length prediction, based on a simple momentum balance between the injected jet and the aerodynamic drag force due to the surrounding gas, which complements the classic hydrodynamic instability breakup mechanism, is suggested. This model offers a simple complementing mechanistic model. It is shown that obtained results compare well with published experiments, and with the established empirical correlation of Wu and Faeth (1995). A simplified version of the model, taking into account an inviscid hydrodynamic model is shown to maintain plausibility of breakup length predictions in fuel-injection relevant conditions.
Technical Paper

Modelling of Distributed-Propulsion Low-Speed HALE UAVs Burning Liquid Hydrogen

2015-09-15
2015-01-2467
The present work focuses on developing an integrated airframe, distributed propulsion, and power management methodology for liquid-hydrogen-fuelled HALE UAVs. Differently from previous studies, the aim is to assess how the synergies between the aforementioned sub-systems affect the integrated system power requirement, production, and distribution. A design space exploration study was carried out to assess the influence of distributing motor-driven fans on three different airframes, namely a tube-and-wing, a triple-fuselage, and a blended-wing-body. For the considered range of take-off masses from 5,000 to 15,000 kg, the 200 kW payload power requirement under examination was found to re-shape the endurance trends. In fact, the drop in specific fuel consumption due to the engine design point change alters the trends from nearly flat to a 25% maximum endurance increase when moving towards heavier take-off masses.
Technical Paper

Effects of Ice Accretion in an Aircraft Protective Mesh Strainer of a Fuel Pump

2015-09-15
2015-01-2449
This paper focuses on the investigation of the nature, process and effects of ice accretion on different feed pump strainers upstream of the aircraft feeding system. A suitable test rig was designed to circulate Jet A-1 containing water/ice contaminants at cold temperatures through the strainers. Following an extensive literature review, a number of screening tests were performed. These provided a strong base for an exhaustive study of fuel icing in the dynamic environment offered by the test rig. The effects of the rate of fuel cooling on the nature of ice were examined. As expected, it was observed that the yield of ice generated on the mesh screen increased with the water concentration in the fuel. It was also revealed that at higher cooling rates, a crust of snow formed on top of softer ice on the mesh screen.
Technical Paper

Trajectory Optimization of Airliners to Minimize Environmental Impact

2015-09-15
2015-01-2400
With the rapid growth in passenger transportation through aviation projected to continue into the future, it is incumbent on aerospace engineers to seek ways to reduce the negative impact of airliner operation on the environment. Key metrics to address include noise, fuel consumption, Carbon Dioxide and Nitrous Oxide emissions, and contrail formation. The research presented in this paper generates new aircraft trajectories to reduce these metrics, and compares them with typical scheduled airline operated flights. Results and analysis of test cases on trajectory optimization are presented using an in-house aircraft trajectory optimization framework created under the European Clean Sky Joint Technology Initiative, Systems for Green Operation Integrated Technology Demonstrator. The software tool comprises an optimizer core and relatively high fidelity models of the aircraft's flight path performance, air traffic control constraints, propulsion and other systems.
Technical Paper

New Unconventional Airship Concept by Morphing the Lenticular Shape

2015-09-15
2015-01-2577
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface.
X