Refine Your Search

Topic

Author

Search Results

Technical Paper

Application of Machine Learning to Engine Air System Failure Prediction

2024-04-09
2024-01-2007
With the capability of avoiding failure in advance, failure prediction model is important not only to end users, but also to the service engineers in vehicle industry. This paper proposes an approach based on anomaly detection algorithms and telematic data to predict the failure of the engine air system with Turbo charger. Firstly, the relationship between air system and all obtained features are analyzed by both physical mechanism and data-wise. Then, the features including altitude, air temperature, engine output power, and charger pressure are selected as the input of the model, with the sampling interval of 1 minute. Based on the selected features, the healthy state for each vehicle is defined by the model as benchmark. Finally, the ‘Medium surface’ is determined for specific vehicle, which is a hyperplane with the medium points of the healthy state located at, to detect the minor weakness symptom (sub-health state).
Technical Paper

Evaluation and Prediction of Fatigue Behavior of Carburized Steel under Uniaxial and Torsional Cyclic Loading

2023-05-25
2023-28-1330
Improving fatigue resistance is a key factor to design components for advanced vehicle transmissions. The selection of materials and heat treatment plays a crucial role in controlling fatigue performance of power transmission components such as gears and shafts. Traditional, low frequency fatigue testing, used for identifying fatigue limit or generating S-N curve for multiple sets of material parameters is highly time consuming and expensive. Hence, it is necessary to develop the capability to predict fatigue performance of materials at different loading conditions with limited amount of data for instance the hardness and inclusion size. In the present work, we have evaluated behavior of the carburized steel subjected to axial and torsional cyclic loading conditions at low frequencies.
Journal Article

Cybersecurity Vulnerabilities for Off-Board Commercial Vehicle Diagnostics

2023-04-11
2023-01-0040
The lack of inherent security controls makes traditional Controller Area Network (CAN) buses vulnerable to Machine-In-The-Middle (MitM) cybersecurity attacks. Conventional vehicular MitM attacks involve tampering with the hardware to directly manipulate CAN bus traffic. We show, however, that MitM attacks can be realized without direct tampering of any CAN hardware. Our demonstration leverages how diagnostic applications based on RP1210 are vulnerable to Machine-In-The-Middle attacks. Test results show SAE J1939 communications, including single frame and multi-framed broadcast and on-request messages, are susceptible to data manipulation attacks where a shim DLL is used as a Machine-In-The-Middle. The demonstration shows these attacks can manipulate data that may mislead vehicle operators into taking the wrong actions.
Technical Paper

Better performance in fine-grain steel for transmission

2023-02-10
2022-36-0033
Manual transmissions for passenger cars are facing pressures due to rapid growth of automatic transmissions, which already represents more than 60% of Brazil market, and from higher torque demand due to strict emission legislation, which turbo engines had presented great contribution to it. To solve this contradictory issue, gears with higher strength and lower cost have been studied to replacement Nickel by Niobium in the steels. Furthermore, this technology could be applied to solve the issues with electrified vehicle, where high torque, speed and lifetime are demanded pursued for gears. This study aimed to build prototypes and compare the S-N curves, fracture analysis, microstructure for three kinds of steels (QS4321 with Ni, QS1916 FG without Ni & with Nb and QS 1916 without Ni and Nb) in the condition carburized, hardened and tempered with and without shot peening.
Technical Paper

Cold Spray Repair Process Optimization Through Development of Particle Impact Velocity Prediction Methodology

2022-10-05
2022-28-0098
Cold spray (CS) is a rapidly developing solid-state repair and coating process, wherein metal deposition is produced without significant heating or melting of metal powder. Solid state bonding of powder particles is produced by impact of high-velocity powder particles on a substrate. In CS process, metal powder particles typically of Aluminum or Copper are suspended in light weight carrier gas medium. Here high pressure and high temperature carrier gas is expanded through a converging-diverging nozzle to generate supersonic gas velocity at nozzle exit. The CS process typically uses Helium as the carrier gas due to its low molecular weight, but Helium gas is quite expensive. This warrants a need to explore alternate carrier gases to make the CS repair process more economical. Researchers are exploring another viable option of using pure Nitrogen as a carrier gas due to its significant cost benefits over Helium.
Technical Paper

Advanced Tire to Vehicle Connectivity for Safety and Fuel Economy of Automated Heavy-Duty Trucks

2022-03-29
2022-01-0881
Safety, fuel economy and uptime are key requirements for the operation of heavy-duty line-haul trucks within a fleet. With the penetration of connectivity and automation technologies, energy optimal and safe operation of the trucks are further improved through Advanced Driver Assistance System (ADAS) features and automated technologies as in truck platooning. Understanding the braking capability of the vehicle is very important for optimal ADAS and platooning control system design and integration. In this paper, the importance of tire connectivity and tire conditions on truck stopping distance are demonstrated through testing. The test data is further utilized to develop tire models for integration in an optimal vehicle automation for platooning. New ways to produce and use the tire related information in real-time optimal control of platooning trucks are proposed and the contribution of tire information in fuel economy is quantified through simulations.
Journal Article

An Evaluation of an Unhealthy Part Identification Using a 0D-1D Diesel Engine Simulation Based Digital Twin

2022-03-29
2022-01-0382
Commercial automotive diesel engine service and repair, post a diagnostic trouble code trigger, relies on standard troubleshooting steps laid down to identify or narrow down to a faulty engine component. This manual process is cumbersome, time-taking, costly, often leading to incorrect part replacement and most importantly usually associated with significant downtime of the vehicle. Current study aims to address these issues using a novel in-house simulation-based approach developed using a Digital Twin of the engine which is capable of conducting in-mission troubleshooting with real world vehicle/engine data. This cost-effective and computationally efficient solution quickly provides the cause of the trouble code without having to wait for the vehicle to reach the service bay. The simulation is performed with a one-dimensional fluid dynamics, detailed thermodynamics and heat transfer-based diesel engine model utilizing the GT-POWER engine performance tool.
Technical Paper

Analytical Methodology for the Prediction of the Wear of Damper Springs in Dry Friction Clutches

2021-09-22
2021-26-0384
Coil springs are crucial components of the clutch damper. Quantifying the stresses accumulated on them during operation is crucial in the prediction of remaining usable spring life. This paper demonstrates the use of a mathematical model-based approach in predicting the behavior of localized stresses on the spring used in clutch dampers. An equivalent cantilever beam model for spring coils solved using the theory of elastic stability is utilized to predict the spring response in operation, a contact model that translates the spring response into localized stresses due to wear and iterative wear model that accounts for surface morphology and change in geometry due to wear is illustrated in this paper for the prediction of wear.
Technical Paper

Experimental Study of Aluminum Metal Foam Material on Heat Transfer Performance

2021-09-22
2021-26-0239
Electrification is one of the megatrends across the industries, like electric vehicles, electric aircraft, etc. which needs advancement in power electronics component technology. As technology advances in miniaturization of power electronics, thermal-management issues threaten to limit the performance of these devices. These may force designers to derate the device performance and ultimately these compromise in design may increase the size & weight of the application. One of the technologies capable of accomplishing these goals employs a class of materials know as metal foam. Metal foams are lightweight cellular materials inspired by nature. The main application of metal foams can be grouped into structural and functional and are based on several excellent properties of the material. Structural applications take advantage of the light-weight and specific mechanical properties of metal foam.
Journal Article

Advancing Platooning with ADAS Control Integration and Assessment Test Results

2021-04-06
2021-01-0429
The application of cooperative adaptive cruise control (CACC) to heavy-duty trucks known as truck platooning has shown fuel economy improvements over test track ideal driving conditions. However, there are limited test data available to assess the performance of CACC under real-world driving conditions. As part of the Cummins-led U.S. Department of Energy Funding Opportunity Announcement award project, truck platooning with CACC has been tested under real-world driving conditions and the results are presented in this paper. First, real-world driving conditions are characterized with the National Renewable Energy Laboratory’s Fleet DNA database to define the test factors. The key test factors impacting long-haul truck fuel economy were identified as terrain and highway traffic with and without advanced driver-assistance systems (ADAS).
Journal Article

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation

2020-04-14
2020-01-0848
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture. Under a U.S. Department of Energy (DOE)-funded project for Medium- and Heavy-Duty Vehicle Powertrain Electrification, Cummins has developed a plug-in hybrid electric Class 6 truck with a range-extending engine designed for pickup and delivery application.
Technical Paper

Correlation of Cylinder Head Gasket Sealing Analysis Results between Gasket Element and 3D Continuum Element

2020-03-10
2020-01-0049
A head gasket is a component that sits between the engine block/liner and cylinder head(s) in an internal combustion engine. Its purpose is to seal high pressure combustion gasses in the cylinders and to seal coolant and engine oil. It is the most critical sealing application in an engine. As a general practice, the load deflection(L/D) characteristic is generated by the gasket manufacturer for edge molded or composite gasket types. However, in the case of a solid-sheet metallic gasket, where the gasket is expected to undergo localized yielding to provide adequate conformance and sealing, usually supplier may not be able to provide the required L/D curve due to difficulties to experimentally separate the large loads and small displacements from the elastic loads and deflections of the experimental apparatus. In absence of L/D curve, the typical analysis approach is to model gasket as 3D continuum elements available in ansys by considering nonlinear material and frictional contacts.
Journal Article

Durability Study of a High Pressure Common Rail Fuel Injection System Using Lubricity Additive Dosed Gasoline-Like Fuel - Additional Cycle Runtime and Teardown Analysis

2019-04-02
2019-01-0263
This study is a continuation of previous work assessing the robustness of a Cummins XPI common rail injection system operating with gasoline-like fuel. All the hardware from the original study was retained except for the high pressure pump head and check valves which were replaced due to cavitation damage. An additional 400 hour NATO cycle was run on the refurbished fuel system to achieve a total exposure time of 800 hours and detect any other significant failure modes. As in the initial investigation, fuel system parameters including pressures, temperatures and flow rates were logged on a test bench to monitor performance over time. Fuel and lubricant samples were taken every 50 hours to assess fuel consistency, metallic wear, and interaction between fuel and oil. High fidelity driving torque and flow measurements were made to compare overall system performance when operating with both diesel and light distillate fuel.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Gear Interference-Fit Joint Considerations and Design for the Resultant Tooth Distortion

2018-04-03
2018-01-1293
Automotive timing gear trains, transmission gearboxes, and wind turbine gearboxes are some of the application examples known to use interference-fit to attach the gear to the rotating shaft. This paper discusses the interference-fit joint design and the finite element analysis to demonstrate the distortion. The mechanism of tooth profile distortion due to the interference-fit assembly in gear trains is discussed by demonstrating the before and after assembly gear profile measurements. An algorithm to calculate the profile slope deviation change is presented. The effectiveness of the computational algorithm to predict the distortion is demonstrated by comparing with measurements. Finally, steps to mitigate the interference assembly effects are discussed.
Technical Paper

Exhaust Heating System Performance for Boosting SCR Low Temperature Efficiency

2018-04-03
2018-01-1428
Real world driving conditions and tightening legislations require improved performance of aftertreatment systems at lower temperatures. Electric heat has been shown to be an effective method of heating exhaust, but having a practical means to provide power and control for the heater has been a barrier for implementation. Recent testing has demonstrated the ability of a 24Vdc heating and control system to effectively heat exhaust using only conventional alternator and battery power sources. Results from transient cycles show the effectiveness of the electrical system and the extent of exhaust heating.
Technical Paper

Diesel Engine Noise Source Visualization with Wideband Acoustical Holography

2017-06-05
2017-01-1874
Wideband Acoustical Holography (WBH), which is a monopole-based, equivalent source procedure (J. Hald, “Wideband Acoustical Holography,” INTER-NOISE 2014), has proven to offer accurate noise source visualization results in experiments with a simple noise source: e.g., a loudspeaker (T. Shi, Y. Liu, J.S. Bolton, “The Use of Wideband Holography for Noise Source Visualization”, NOISE-CON 2016). From a previous study, it was found that the advantage of this procedure is the ability to optimize the solution in the case of an under-determined system: i.e., when the number of measurements is much smaller than the number of parameters that must be estimated in the model. In the present work, a diesel engine noise source was measured by using one set of measurements from a thirty-five channel combo-array placed in front of the engine.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Technical Paper

Diesel Engines Gear Whine: Production Plant Perspective

2017-06-05
2017-01-1809
Engine noise is one of the significant aspects of product quality for light and medium duty diesel engine market applications. Gear whine is one of those noise issues, which is considered objectionable and impacts the customer’s perception of the product quality. Gear whine could result due to defects in the gear manufacturing process and/or due to inaccurate design of the gear macro and micro geometry. The focus of this technical paper is to discuss gear whine considerations from the production plant perspective. This includes quick overview of the measurement process, test cell environment, noise acceptance criteria considerations. A gear whine case study is presented based on the data collected in the test cell at the engine plant. Gear whine data acquired on current product and next generation of prototype engines is analyzed and presented. This paper concludes by highlighting the lessons learned from the case study.
Technical Paper

Dynamic Analysis of Helical Gear Pair Due to TE and Shuttling Moment Excitations

2017-06-05
2017-01-1818
Helical gears are commonly used instead of spur gears due to their potential higher load carrying capacity, efficiency and lower noise. Transmission Error (TE) is defined as deviation from perfect motion transfer by a gear pair. TE is dominant source of gear whine noise and hence gears pairs are generally analyzed and designed for low TE. In the process of designing helical gears for lower TE, the shuttling moment can become a significant excitation source. Shuttling moment is caused due to shifting of the centroid of tooth normal force back and forth across the lead. The amount of shuttling force or moment is produced by combination of design parameters, misalignment and manufacturing errors. Limited details are available on this excitation and its effect on overall noise radiated from gear box or transmission at its gear mesh frequency and harmonics.
X