Refine Your Search

Topic

Author

Search Results

Technical Paper

Numerical Analysis of Wind Noise Transmission through BEV Underbody

2023-05-08
2023-01-1119
In electrified automobiles, wind noise significantly contributes to the overall noise inside the cabin. In particular, underbody airflow is a dominant noise source at low frequencies (less than 500 Hz). However, the wind noise transmission mechanism through a battery electric vehicle (BEV) underbody is complex because the BEV has a battery under the floor panel. Although various types of underbody structures exist for BEVs, in this study, the focus was on an underbody structure with two surfaces as inputs of wind noise sources: the outer surface exposed to the external underbody flow, such as undercover and suspension, and the floor panel, located above the undercover and battery. In this study, aero-vibro-acoustic simulations were performed to clarify the transmission mechanism of the BEV underbody wind noise. The external flow and acoustic fields were simulated using computational fluid dynamics.
Technical Paper

Impact of EV Charging on Power System with High Penetration of EVs: Simulation and Quantitative Analysis Based on Real World Usage Data

2020-04-14
2020-01-0531
The adoption of electric vehicles (EVs) has been announced worldwide with the aim of reducing CO2 emissions. However, a significant increase in electricity demand by EVs might impact the stable operation of the existing power grid. Meanwhile, EV charging is acceptable to most users if it is completed by the time of the next driving event. From the viewpoint of power grid operators, flexibility for shifting the timing of EV charging would be advantageous, including making effective use of renewable energy. In this work, an EV model and simulation tool were developed to make clear how the total charging demand of all EVs in use will be influenced by future EV specifications (e.g., charge power) and installation of charging infrastructure. Among the most influential factors, EV charging behavior according to use cases and regional characteristics were statistically analyzed based on the real-world usage data of over 14, 000 EVs and incorporated in the simulation tool.
Technical Paper

Comparison of Head Kinematics of Bicyclist in Car-to-Bicycle Impact

2020-04-14
2020-01-0932
This study focused on European NCAP activities of introducing a new head protection evaluation procedure, as proposed by BASt (Federal Highway Research Institute - GERMANY). Various kinds of E-bikes are available in the market, ranging from E-bikes that have a small motor to assist the rider’s pedal-power i.e., pedelecs to somewhat more powerful E-bikes which is similar to a moped-style scooter. This paper focused on identifying the factors influencing bicyclist head kinematics during bicycle vs. passenger vehicle (PV) collisions at the intersection. Two AM50 bicyclist FE models are developed using i) GHBMC Human Body Model (HBM) and ii) WorldSID (WS) side impact dummy. Head kinematics of bicyclists of pedal-assist E-bike and normal bike were compared using CAE simulation. It is found that the vehicle’s impact velocity, type of bicycle, the mass of E-bike and bicycle traveling speed will influence the head kinematics.
Technical Paper

Aerodynamics Development for a New EV Hatchback Considering Crosswind Sensitivity

2018-04-03
2018-01-0715
An electric vehicle (EV) has less powertrain energy loss than an internal combustion engine vehicle (ICE), so its aerodynamic accounts have a larger portion of drag contribution of the total energy loss. This means that EV aerodynamic performance has a larger impact on the all-electric range (AER). Therefore, the target set for the aerodynamics development for a new EV hatchback was to improving AER for the customer’s benefit. To achieve lower aerodynamic drag than the previous model’s good aerodynamic performance, an ideal airflow wake structure was initially defined for the new EV hatchback that has a flat underbody with no exhaust system. Several important parameters were specified and proper numerical values for the ideal airflow were defined for them. As a result, the new EV hatchback achieves a 4% reduction in drag coefficient (CD) from the previous model.
Technical Paper

Application of 980 MPa Grade Advanced High Strength Steel with High Formability

2018-04-03
2018-01-0625
There are strong demands for vehicle weight reductions so as to improve fuel economy. At the same time, it is also necessary to ensure crash safety. One effective measure for accomplishing such both requirements conflicting each other is to apply advanced high strength steel (AHSS) of 780 MPa grade or higher to the vehicle body. On the other hand, higher strength steels generally tend to display lower elongation causing formability deterioration. Nissan Motor Corporation have jointly developed with steel manufacturers a new 980 MPa grade AHSS with high formability with the aim of substituting it for the currently used 590 MPa grade high-tensile steel. Several application technologies have been developed through the verifications such as formability, resistance spot weldability, crashworthiness, and delayed fracture.
Technical Paper

A Model Based Design Methodology for Variable Flux PMSMs to Obtain Desired Speed-Torque Characteristics

2016-04-05
2016-01-1233
Variable flux permanent magnet synchronous machines (VFPMSMs) have been designed by using finite element analysis (FEA) to evaluate speed-torque capability considering requirement for magnetization state (MS) manipulation. However, due to its unique characteristic to change the MS, numerous combinations of design parameters need to be evaluated to achieve a final design. To accelerate the design process, this paper presents a method that consists of an equivalent magnetic circuit model and a process to obtain magnet width and thickness that satisfy target maximum torque and power factor (P.F.) capability. This model includes magnet operating point analysis under given magnet width and thickness condition to achieve target MS and avoid demagnetization at full load. This analysis provides desired stator magnetomotive force, magnet and stator induced flux linkage. Therefore, expected torque and P.F. capability is calculated.
Technical Paper

Development of the Aerodynamics of the New Nissan Murano

2015-04-14
2015-01-1542
The new Murano was developed with special emphasis on improving aerodynamics in order to achieve fuel economy superior to that of competitor models. This paper describes the measures developed to attain a drag coefficient (CD) that is overwhelmingly lower than that of other similar models. Special attention was paid to optimizing the rear end shape so as to minimize rear end drag, which contributes markedly to the CD of sport utility vehicles (SUVs). A lower grille shutter was adopted from the early stage of the development process. When open, the shutter allows sufficient inward airflow to ensure satisfactory engine cooling; when closed, the blocked airflow is actively directed upward over the body. The final rear end shape was tuned so as to obtain the maximum aerodynamic benefit from this airflow. In addition, a large front spoiler was adopted to suppress airflow toward the underbody as much as possible.
Technical Paper

Application of Prediction Formulas to Aerodynamic Drag Reduction of Door Mirrors

2015-04-14
2015-01-1528
It is considered that door mirror drag is composed of not only profile drag but also interference drag that is generated by the mixing of airflow streamlines between door mirrors and vehicle body. However, the generation mechanism of interference drag remained unexplained, so elucidating mechanism for countermeasures reducing drag have been needed. In this study, the prediction formulas for door mirror drag expressed by functions in relation to velocities around the vehicle body were derived and verified by wind tunnel test. The predicted values calculated by formulas were compared with the measured values and an excellent agreement was found. In summary, new prediction formulas made it possible to examine low drag mirror including profile and interference drag.
Technical Paper

Independent Control of Steering Force and Wheel Angles to Improve Straight Line Stability

2014-04-01
2014-01-0065
This paper describes a control method to improve straight-line stability without sacrificing natural steering feel, utilizing a newly developed steering system controlling the steering force and the wheel angle independently. It cancels drifting by a road cant and suppresses the yaw angle induced by road surface irregularities or a side wind. Therefore drivers can keep the car straight with such a little steering input adjustment, thus reducing the driver's workload greatly. In this control method, a camera mounted behind the windshield recognizes the forward lane and calculate the discrepancy between the vehicle direction and the driving lane. This method has been applied to the test car, and the reduction of the driver's workload was confirmed. This paper presents an outline of the method and describes its advantages.
Technical Paper

Variable Characteristic Permanent Magnet Motor for Automobile Application

2014-04-01
2014-01-1869
This paper describes a variable magnetomotive force interior permanent magnet (IPM) machine for use as a traction motor on automobiles in order to reduce total energy consumption during duty cycles and cut costs by using Dy-free magnets. First, the principle of a variable magnetomotive force flux-intensifying IPM (VFI-IPM) machine is explained. A theoretical operating point analysis of the magnets using a simplified model with nonlinear B-H characteristics is presented and the results are confirmed by nonlinear finite element analysis. Four types of magnet layouts were investigated for the magnetic circuit design. It was found that a radial magnetization direction with a single magnet is suitable for the VFI-IPM machine. Magnetization controllability was investigated with respect to the magnet thickness, width and coercive force for the prototype design. The estimated variable motor speed and torque characteristics are presented.
Technical Paper

Prediction and Analysis Technology Development for Impact Noise

2014-04-01
2014-01-0895
In order to enhance product attraction, it is important to reduce the impact noise when a vehicle go over bumps such as bridge joints. Vehicle performance to transitional noise phenomena is not yet analyzed well. In this paper, a prediction method is established by vector composition and inverse Fourier transform with the combination of Multibody Dynamics (MBD) and FEM. Also, a root cause analysis method is established with the following three mechanism analysis methods; transfer path analysis, mode contribution analysis, and panel contribution analysis.
Technical Paper

Aerodynamic Development of the Newly Developed Electric Vehicle

2011-05-17
2011-39-7230
This paper explains the specific measures taken to develop the body and underfloor of the newly developed Electric Vehicle for the purpose of reducing drag. Additionally, the headlamps and fenders were designed with innovative shapes to reduce wind noise that occurs near the outside mirrors. As a result of utilizing the aerodynamic advantages of an electric vehicle to maximum effect, The newly developed Electric Vehicle achieves a class-leading drag coefficient and interior quietness.
Technical Paper

DEVELOPMENT OF CRASH SAFETY OF THE NEWLY DEVELOPED ELECTRIC VEHICLE

2011-05-17
2011-39-7232
An electric vehicle (EV) is promising as clean energy powered vehicle, due to increased interest in fuel economy and environment in recent years. However, it requires to meet unique safety performance such as electric safety. Nissan has developed a new electric vehicle which achieves electric safety in addition to maintaining enough cruising distance and cabin space. This was achieved by I he development of an all-new platform for electric vehicles. The electric safety was enhanced by the protection of high-voltage components based on consideration of component layout and body structure, high-voltage shutdown by impact sensing system and prevention of short circuit by fuse in the battery. As an example of the protection of high-voltage components, the battery which locates under the floor was protected by elaborative packaging and multi-layer protection structure.
Technical Paper

Low-cost FC Stack Concept with Increased Power Density and Simplified Configuration: Utilizing an Advanced MEA with Integrated Molded Frame

2011-05-17
2011-39-7260
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in durability, cold start-up capability, cost and size with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Journal Article

Low-Cost FC Stack Concept with Increased Power Density and Simplified Configuration Utilizing an Advanced MEA

2011-04-12
2011-01-1344
In 2006, Nissan began limited leasing of the X-TRAIL FCV equipped with their in-house developed Fuel Cell (FC) stack. Since then, the FC stack has been improved in cost, size, durability and cold start-up capability with the aim of promoting full-scale commercialization of FCVs. However, reduction of cost and size has remained a significant challenge because limited mass transport through the membrane electrode assembly (MEA) has made it difficult to increase the rated current density of the FC. Furthermore, it has been difficult to reduce the variety of FC stack components due to the complex stack configuration. In this study, improvements have been achieved mainly by adopting an advanced MEA to overcome these difficulties. First, the adoption of a new MEA and separators has improved mass transport through the MEA for increased rated current density. Second, an integrated molded frame (IMF) has been adopted as the MEA support.
Technical Paper

Application of CAP to Analyze Mechanisms Producing Dummy Injury Readings under U.S. Side Impact Test Conditions

2011-04-12
2011-01-0014
Evaluations of dummy injury readings obtained in regulatory crash tests and new car assessment program tests provide indices for the development of crash safety performance in the process of developing new vehicles. Based on these indices, vehicle body structures and occupant restraint systems are designed to meet the required occupant injury criteria. There are many types of regulatory tests and new car assessment program tests that are conducted to evaluate vehicle safety performance in side impacts. Factoring all of the multiple test configurations into the development of new vehicles requires advanced design capabilities based on a good understanding of the mechanisms producing dummy injury readings. In recent years, advances in computer-aided engineering (CAE) tools and computer processing power have made it possible to run simulations of occupant restraint systems such as side airbags and seatbelts.
Technical Paper

Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle

2011-04-12
2011-01-0350
This paper describes the motor and inverter system developed for the Nissan LEAF that has been specifically designed as a mass-produced electric vehicle. The system produces maximum torque of 280 Nm and maximum power of 80 kW. The motor achieves a small size, high power, and high efficiency as a result of adopting the following in-house technologies. The magnetic circuit design was optimized for an interior magnet synchronous motor to attain the maximum performance figures noted here. The material technologies of the rotor and the stator facilitate high efficiency and the production technology achieves high density winding. The cooling mechanism is optimally designed for a mass-produced electric vehicle. The inverter incorporates the following original technologies and application-specific parts to obtain cost reductions combined with reliability improvements. The power module has an original structure with the power devices mounted directly on the busbars.
Journal Article

Study on a High Torque Density Motor for an Electric Traction Vehicle

2009-04-20
2009-01-1337
A compact and high performance electric motor, called the 3D motor and designed to achieve output torque density of 100 Nm/L, was developed for use on electric vehicles and hybrid electric vehicles. The motor adopts an axial flux configuration, consisting of a disk-shaped stator sandwiched between two disk-shaped rotors with permanent magnets. It also adopts 9-phase current with a fractional slot combination, both of which increase the torque density. The rated torque output of this high power-density motor is achieved by applying a hybrid cooling system comprising a water jacket on the outer case of the stator and oil dispersion into the air gaps. The mechanical strength of the rotors against centrifugal force and that of the stator against torque exertion were confirmed in mechanical experiments. Several measures such as flux barriers, a chamfered rotor rim, parallel windings, and radially laminated cores were adopted to suppress losses.
Journal Article

Dissimilar Joining of Aluminum Alloy and Steel by Resistance Spot Welding

2009-04-20
2009-01-0034
This study concerns a dissimilar materials joining technique for aluminum (Al) alloys and steel for the purpose of reducing the vehicle body weight. The tough oxide layer on the Al alloy surface and the ability to control the Fe-Al intermetallic compound (IMC) thickness are issues that have so far complicated the joining of Al alloys and steel. Removing the oxide layer has required a high heat input, resulting in the formation of a thick Fe-Al IMC layer at the joint interface, making it impossible to obtain satisfactory joint strength. To avoid that problem, we propose a unique joining concept that removes the oxide layer at low temperature by using the eutectic reaction between Al in the Al alloy and zinc (Zn) in the coating on galvanized steel (GI) and galvannealed steel (GA). This makes it possible to form a thin, uniform Fe-Al IMC layer at the joint interface. Welded joints of dissimilar materials require anticorrosion performance against electrochemical corrosion.
Technical Paper

A Study of a Method for Predicting the Risk of Crossing-Collisions at Intersection

2008-04-14
2008-01-0524
The probability or risk of traffic accidents must be estimated quantitatively in order to implement effective traffic safety measures. In this study, various statistical data and probability theory were used to examine a method for predicting the risk of crossing-collisions, representing a typical type of accident at intersections in Japan. Crossing-collisions are caused by a variety of factors, including the road geometry and traffic environment at intersections and the awareness and intentions of the drivers of the striking and struck vehicles. Bayes' theorem was applied to find the accident probability of each factor separately. Specifically, the probability of various factors being present at the time of a crossing-collision was estimated on the basis of traffic accident data and observation survey data.
X